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PART 1:  GPC ESTIMATION USING EXTENDED KALMAN FILTERING 
 
PROBLEM 
 

ABSTRACT 

The generalized polynomial chaos (gPC) method for propagating uncertain parameters through 
dynamical systems (previously developed at Virginia Tech) has been shown to be very computationally 
efficient. This method seems also to be ideal for real-time parameter estimation when merged with the 
Extended Kalman Filter (EKF). The resulting technique is shown in the present report for systems in state-
space representations, and then expanded to systems in regressions formulations. Due to the way the 
filter interacts with the polynomial chaos expansions, the covariance matrix is forced to zero in finite 
time. This problem shows itself as an inability to perform state estimations and causes the parameters to 
converge to incorrect values for state space systems. In order to address this issue, improvements to the 
method are implemented and the updated method is applied to both state space and regression systems. 
The resultant technique shows high accuracy of both state and parameter estimations. 

INTRODUCTION 

The Generalized Polynomial Chaos Extended Kalman Filter (gPC-EKF), developed by Blanchard [1, 
2], is capable of performing parameter estimation in nonlinear systems [3-5]. When the Extended 
Kalman Filter (EKF) is altered by the Generalized Polynomial Chaos (gPC) expansions, a major flaw in the 
filter appears which drives the covariance matrix to zero. This prevents state estimation and signal 
filtering and causes the parameter values to converge to incorrect values. Improvements are 
implemented that enable the standard state estimation capabilities and improve the parameter 
convergence. 

The gPC-EKF is expanded to regression systems, where it performs as a computationally efficient, 
derivative free, iterative, real-time non-linear, recursive regression estimator. The gPC-EKF is applied to a 
non-linear vehicle model and compared to the recursive least squares (RLS) method.  

 
 
APPROACH 
 

GENERALIZED POLYNOMIAL CHAOS 

Generalized Polynomial Chaos is a method that propagates uncertain parameters through the 
dynamics of a system. The collocation approach for gPC resembles a Monte Carlo approach, where the 
system is iterated at each time step. However, unlike Monte Carlo, the iteration process is used to 
approximate integration over the parameter space. This integration process is used to create a 
continuous map between the parameter space and the system dynamics. 
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A deterministic system can be described in a state space formulation. This system is a function of time (𝑡), 
the state variables (𝑥) and velocities (𝑣), and the system parameters (𝑝). The system can also be 
affected by process noise (𝑤). 

�̇�𝒌 = 𝒗𝒌 (1) 

�̇�𝑘 = 𝐹𝑘(𝑡, 𝑥, 𝑣;𝑝) + 𝑤 
(2) 

The gPC method expands each of the parameters in a power series [6, 7]: 

�̇�𝒌𝒊 = 𝒗𝒌𝒊  (3) 

��̇�𝒌𝒊  ᴪ𝐢(𝛏)
𝑺

𝒊=𝟏

= 𝑭𝒌 �𝒕, � 𝒙𝒎 ᴪ𝐦(𝝃)
𝑺

𝒎=𝟏

, � 𝒗𝒎 ᴪ𝐦(𝝃)
𝑺

𝒎=𝟏

; � 𝒑𝒎 ᴪ
𝑺

𝒎=𝟏

 

(4) 

 

The indexes are defined as: 𝒊 or 𝒎 are the power series term indexes and 𝒌 is the discreet time 
index. Each parameter is described by S power series coefficients.  These coefficients multiply a set of 
orthogonal or orthonormal basis functions. The basis functions are chosen to represent different 
parameter distributions. For the gPC-EKF the most useful is the Legendre polynomials, as they describe a 
uniform parameter distribution and are more appropriate for implementation with the EKF. The set of 
Jacobi polynomials for a uniform beta distribution return the same results as the Legendre polynomials. 

These basis functions (𝝍) are functions of an n dimensional random variable (𝝃). This random 
variable has an element for each uncertain parameter, and is used to span the space of the basis 
functions. Each uncertain parameter (𝒅) has a distribution:  

𝒑𝒅 = �𝒑𝒅𝒊  𝝍𝒅
𝒊 (𝝃𝒅)

𝒊

 (5) 

 

This gives the states a multivariable distribution, because uncertain parameters cause the states 
to become uncertain: 

𝒙𝒏 = �𝒙𝒏𝒊  𝜳𝒊(𝝃)
𝒊

 (6) 

 

The multidimensional basis function is created through a tensor product of the single 
dimensional basis functions: 
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𝜳𝒋(𝝃𝟏 … 𝝃𝒅) = �𝝍𝒌
𝒊 (𝝃𝒌)

𝒅

𝒌=𝟏

, 

  𝒋 = 𝟏,𝟐, …𝑺,     𝒊 = 𝟏,𝟐, …𝑷𝑶 

(7) 

𝑆 is calculated from the polynomial order (PO) and the number of uncertain parameters (d) as: 

𝑆 =
(𝑑 + 𝑃𝑂)!
𝑑!𝑃𝑂!

 

(8) 

 

For the collocation technique the power series coefficients are solved through an iteration 
process. A matrix of collocation points (𝝁) are chosen with the 𝒊𝒕𝒉 iteration as the vector 𝝁𝒊: 

𝝁𝒊 = �𝝁𝟏𝒊 …𝝁𝒅𝒊 �
𝑻

 𝒇𝒐𝒓 𝒂𝒍𝒍 𝟏 ≤ 𝒊 ≤ 𝑸 (9) 

 

The system dynamics are re-written as: 

�̇�𝒊 = 𝒗𝒊 (10) 

��̇�𝒋 ᴪ𝒋�𝝁𝒊�
𝑺

𝒋=𝟏

= 𝑭�𝒕, � 𝒙𝒎 ᴪ𝐦�𝝁𝒊�
𝑺

𝒎=𝟏

, � 𝒗𝒎 ᴪ𝐦�𝝁𝒊�
𝑺

𝒎=𝟏

; � 𝒑𝒎 
𝑺

𝒎=𝟏

𝟏 ≤ 𝒊 ≤ 𝑸 

(11) 

 

The set of values of ᴪ𝒋�𝝁𝒊� can be written in matrix form as 𝑨𝒊,𝒋 = ᴪ𝒋�𝝁𝒊�, 𝟏 ≤ 𝒋 ≤ 𝒔, 𝟏 ≤ 𝒊 ≤
𝑸. The system dynamics equations are written in their final form: 

��̇�𝒋 ᴪ𝒋�𝝁𝒊�
𝑺

𝒋=𝟏

= 𝑭�𝒕, � 𝑨𝒊,𝒋 𝒙𝒎
𝑺

𝒎=𝟏

, � 𝑨𝒊,𝒋 𝒗𝒎
𝑺

𝒎=𝟏

; � 𝑨𝒊,𝒋 𝒑𝒎
𝑺

𝒎=𝟏

� ,

𝟏 ≤ 𝒊 ≤ 𝑸 

(12) 
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The system equations for the iteration are written as: 

𝑿𝒊(𝒕) = �𝑨𝒊,𝒋 𝒙𝒋(𝒕)
𝑸

𝒋=𝟏

 
(13) 

 

 
Then equation (12) becomes: 

�̇�𝒊(𝒕) = 𝑭(𝒕,𝒀𝒊,𝑽𝒊:𝑷𝒊), 𝟏 ≤ 𝒊 ≤ 𝑸 (14) 

 

The power series coefficients are recovered using the collocation matrix: 

𝒙𝒊(𝑻) = �(𝑨#)𝒊,𝒋 𝑿𝒋(𝑻)
𝑸

𝒋=𝟏

 
(15) 

 

GPC-EKF 

The EKF equations are defined as [8]: 

𝑲𝒌 = 𝑴𝒌 𝑯𝒌
𝑻 �𝑯𝒌 𝑴𝒌 𝑯𝒌

𝑻 + 𝑹𝒌�
−𝟏

 (16) 

𝑴𝒌 = 𝜱𝒌 𝑷𝒌−𝟏 𝜱𝒌 + 𝑸𝒌 (17) 

𝑷𝒌 = (𝑰 − 𝑲𝒌 𝑯𝒌) 𝑴𝒌 (18) 

 

 𝑲 is the Kalman update coefficient, 𝑷 is the forecast covariance matrix, 𝑴 is the updated 
covariance matrix, 𝑹 is the noise covariance matrix, 𝑸 is the process noise covariance matrix, 𝑯 is the 
linearized observation matrix, and 𝜱 is the linearized functional form matrix.  

The Kalman state update is expressed as: 

𝒙𝒌𝒖 = 𝒙𝒌
𝒇 +𝑲𝒌 (𝒛𝒌 − 𝑯𝒌 𝒙𝒌

𝒇) (19) 

 

𝒙𝒌𝒖 is the updated state vector at time 𝒌, 𝒙𝒌
𝒇  is the initial state estimate, and 𝒛𝒌 is the sensor 

measurement. 

These equations use the system’s functional form to create the covariance matrix. The gPC gives 
a trivial method of extracting the covariance matrix, however: 
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𝒄𝒐𝒗�𝒙𝒅,𝒌,𝒙𝒋,𝒌� = �𝒙𝒅,𝒌
𝒊  𝒙𝒋,𝒌𝒊

𝑺

𝒊=𝟐

 
(20) 

 

The parameters are formally added to the state vector: 

�̇�𝒏 = ��̇�𝒏�̇� � = �𝒇(𝒙) + 𝒘
𝟎

� (21) 

 

And the state update equations are used to update the states and the parameters. The Kalman 
update equations are expanded to the gPC system where they modify the power series coefficients.  

𝒙𝒌
𝒖,𝒊 = 𝒙𝒌

𝒇,𝒊 + 𝑲𝒌 �𝒛𝒌𝜹(𝒊 − 𝟏) −𝑯𝒌 𝒙𝒌
𝒇,𝒊� (22) 

𝑲𝒌 = 𝒄𝒐𝒗 𝑯𝑻�𝑹𝒌 + 𝑯 𝒄𝒐𝒗 𝑯𝑻�−𝟏 (23) 

 

The measured signal 𝑧𝑘 is expanded in the same power series as the states and parameters, but the 
measured signal is assumed to have no uncertainty and expands to only the first time in the power 
series. The rest of the coefficients are zero. In gPC the first term in the power series expansion is the 
mean and the rest of the terms sum to the variance. The initial creation of this filter is found in 
Blanchard’s paper [2]. 𝛿 is the delta function. 
 
METHODOLOGY 
 

GPC-EKF IMPROVEMENTS FOR STATE SPACE SYSTEMS 

The problem in the previous section is that the measured signal is expanded to the power series 
without any higher-order terms. The system drives the first-order terms in the expansions to the 
measured signal while driving the higher-order terms to zero. Since the covariance matrix is calculated 
from only the higher-order terms, this drives the covariance to zero. Blanchard initially diagnosed this 
problem but attributed it to the power series truncation [9]. 

For steady state estimation and filtering, a small diagonal matrix is added to the covariance 
matrix:  
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𝒄𝒐𝒗(𝒙𝒌,𝒙𝒌)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝒙𝟏,𝒌

𝒊  𝒙𝟏,𝒌
𝒊

𝑺

𝒊=𝟐

⋯ �𝒙𝟏,𝒌
𝒊  𝒙𝒏,𝒌

𝒊
𝑺

𝒊=𝟐
⋮ ⋱ ⋮

�𝒙𝒏,𝒌
𝒊  𝒙𝟏,𝒌

𝒊
𝑺

𝒊=𝟐

⋯ �𝒙𝒏,𝒌
𝒊  𝒙𝒏,𝒌

𝒊
𝑺

𝒊=𝟐 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒄 �

𝟏 𝟎 ⋯ 𝟎
𝟎 𝟏 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟏

� 

(24) 

 

This introduces a new problem, because the added covariance information is independent of the 
actual system dynamics and parameters. If this added matrix is too large, it will de couple the observed 
states, the unobserved states and the parameter estimation process. The parameter 𝒄~𝟏𝒆 − 𝟒. 

Therefore, at each step forward the parameter values have their distributions expanded. This 
distribution should remain small, so as not to enable too fast of a Kalman update coefficient, but large 
enough to be more significant than the added diagonal matrix.  

𝑿𝑲
𝒋 = 𝑿𝒌

𝒋 +

⎣
⎢
⎢
⎢
⎢
⎡

𝟎
⋮
𝟎

𝒄𝟏 ∗ 𝒑𝟏𝟐 ∗ 𝝁𝟏𝒊
⋮

𝒄𝒅 ∗ 𝒑𝒅𝟐 ∗ 𝝁𝒅𝒊 ⎦
⎥
⎥
⎥
⎥
⎤

 

(25) 

 

The parameters 𝒄𝟏 … 𝒄𝒅 are coefficients for each individual parameter to be estimated. These 
values are also small, but must be tuned for the specific parameters. 

Starting the system with a distribution in the states creates a significant amount of information 
for the covariance matrix. This information will converge to zero, and so it does not impact the steady 
state solution of the filter, but significantly improves convergence for incorrect initial state estimates. For 
the first integration, a random noise vector is fed to each state: 

𝑿𝟎
𝒋 = 𝑿𝟎

𝒋 +

⎣
⎢
⎢
⎢
⎢
⎡

𝑵𝟏
⋮
𝑵𝒏

𝒄𝟏 ∗ 𝒑𝟏𝟐 ∗ 𝝁𝟏𝒊
⋮

𝒄𝒅 ∗ 𝒑𝒅𝟐 ∗ 𝝁𝒅𝒊 ⎦
⎥
⎥
⎥
⎥
⎤

 

(26) 
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The added noise 𝑵 changes value for each index 𝒋 of the iteration process. It can be colored or white 
noise.  

GPC-EKF IMPROVEMENTS FOR REGRESSION SYSTEMS 

For regression systems there is no state vector, but because the system is fed through the gPC-
EKF, a state vector is created. This state vector is a combination of the regression equations and 
parameter values. The modifications for improving the state estimations are no longer needed. The 
Kalman update equations for the states are actually set to zero, such that: 

𝑲 = �𝟎𝟏 … 𝟎𝒏,𝒌𝒑𝟏 …𝒌𝒑𝒏�
𝑻

 (27) 

 

There should be no alteration of the regression equations from the filter. The additions to the 
parameter distributions are helpful. The system is far more sensitive to this addition, however, and the 
additions should be very small. 

GPC-EKF APPLIED TO A STATE SPACE SYSTEM  

For a mass spring system, with state space formulation defined as: 

�
�̇�
�̇�
�̇�
� = �

𝒗

−
𝒌
𝒎
∗ 𝒙

𝟎
� + �

𝟎
𝐬𝐢𝐧(𝒕)
𝟎

� 
(28) 

 

The mass spring system is simulated and the parameters and states are estimated through the 
original gPC-EKF method. The first simulation performed is with the mass parameter perturbed but with 
the states of the filter set to the same initial conditions as the actual system.   
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Table 1 lists the values for each of the filter’s tuneable coefficients. Figure 1 shows the 
unmodified filter performing the state estimation of the system’s position, Figure 2 shows the filter’s 
estimation of the system’s velocity, and Figure 3 shows the mass estimation. 

TABLE 1 PARAMETER VALUES FOR UNMODIFIED GPC-EKF SYSTEM 

Poly Order 2 

Q 6 

Time Step (S) 0.01 

𝒄 0 

𝒄𝟏 0 

𝒙𝟎 0 

𝒗𝟎 0 

𝒎𝟏 200 

𝒎𝟐 30 

𝑵𝟏 0 

𝑵𝟐 0 

  

 

FIGURE 1 POSITION ESTIMATION FOR UNMODIFIED GPC-EKF 
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FIGURE 2 VELOCITY ESTIMATION FOR UNMODIFIED GPC-EKF 

 

FIGURE 3 MASS ESTIMATION FOR UNMODIFIED GPC-EKF 

This simulation demonstrates the key problem with the gPC-EKF. The covariance stays significant enough 
for the parameter value to almost converge, but the states show permanent tracking error. This is 
because the covariance has trivial information about the states. For initial errors in the states the 
unmodified gPC-EKF will perform poorly. It may stay stable, but will not be able to estimate any 
parameter values. 
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FINDINGS 
 

RESULTS OF THE GPC-EKF WITH MODIFICATIONS 

For the same system run through the modified filter, the initial conditions can be off by a 
significant amount. Table 2 details the modified filter’s coefficients. 

TABLE 2 PARAMETER VALUES FOR GPC-EKF WITH MODIFICATIONS 

Poly Order 2 

Q 4 

Time Step (S) 0.01 

𝒄 0.001 

𝒄𝟏 0.01 

𝒙𝟎 15 

𝒗𝟎 15 

𝒎𝟏 1000 

𝒎𝟐 50 

𝑵𝟏 [-3,3] 

𝑵𝟐 [-3,3] 

 

Figure 4 shows the modified filter’s estimation of the position, Figure 5 shows the velocity estimation, 
and Figure 6 shows the mass estimation.  

 

FIGURE 4 POSITION ESTIMATION FOR MODIFIED GPC-EKF 
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FIGURE 5 VELOCITY ESTIMATION FOR MODIFIED GPC-EKF 

 

FIGURE 6 MASS ESTIMATION FOR MODIFIED GPC-EKF 

The modified filter is able to handle significant errors in the initial states and parameters. This 
method performs significantly better than the unmodified filter. 

GPC-EKF APPLIED TO REGRESSION SYSTEM 

The state vector, including uncertain parameters, for the vehicle model is: 

𝒙 = ��̈�, �̈�, �̈�;𝒑�
𝑻

 (29) 
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This is a vector of the vertical acceleration (�̈�), pitch acceleration (�̈�), roll acceleration (�̈�), and 
the parameters (𝒑):  

𝒑 = �𝒎, 𝑱𝜽, 𝑱𝝓,𝒉� (30) 

 

The parameters of the system are mass, pitch inertia, roll inertia, and center of gravity height. 
The regression system is defined as: 

 �̈� =
𝟏
𝒎

� 𝑺𝑭𝒊
𝒊=𝒇𝒍,𝒇𝒓,𝒓𝒍,𝒓𝒓

 (31) 

 �̈� =
𝟏
𝑱𝝓
�𝒍 �𝑺𝑭𝒇𝒍 + 𝑺𝑭𝒓𝒍� − 𝒓 �𝑺𝑭𝒇𝒓 + 𝑺𝑭𝒓𝒓�

+ 𝒎𝒉𝑨𝒚�  

(32) 

 �̈� =
𝟏
𝑱𝜽
�−𝒂 �𝑺𝑭𝒇𝒍 + 𝑺𝑭𝒇𝒓� + 𝒃 (𝑺𝑭𝒓𝒍 + 𝑺𝑭𝒓𝒓)

+ 𝒎𝒉𝑨𝒙 � 

(33) 

 

𝑺𝑭𝒊 is the force in the suspension for the front left (fl), front right (fr), rear left (rl) and rear right 
(rr) respectively. 𝑨𝒚 is the lateral acceleration and 𝑨𝒙  is the longitudinal acceleration of the vehicle. The 
geometric parameters (𝒍, 𝒓,𝒂,𝒃) of the vehicle define the distance from the CG to the left side of the 
vehicle (𝒍), to the right side of the vehicle (𝒓), the distance to the front axle from the CG (𝒂), and the 
distance to the rear axle from the CG (𝒃).  

The parameter estimation is performed for the vehicle model with no sensor noise first. Table 3 
defines the filter’s coefficients for the regression. 

TABLE 3 PARAMETER VALUES FOR GPC-EKF FOR REGRESSION SYSTEM 

Poly Order 2 

Q 4 

Time Step (S) 0.01 

𝒄 0 

𝒄𝟏 1/2000 

𝒄𝟐 1/2000 

𝒄𝟑 1/1000 

𝒄𝟒 1/2000 

R 0.01 
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Figure 7 shows the CG height estimation for both the RLS and gPC-EKF methods. The RLS method 
performs a better estimation. 

 

FIGURE 7 HEIGHT ESTIMATION 

Figure 8 shows the mass estimation. The RLS algorithm again performs a better estimation of the 
system parameter. The gPC-EKF does start with a significantly worse initial estimate.  

 

FIGURE 8 MASS ESTIMATION 

Figure 9 shows the pitch inertia estimation. The RLS algorithm performs the estimation better 
than the gPC-EKF, with the RLS estimate overlapping the system’s actual value.  
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FIGURE 9 PITCH INERTIA ESTIMATION 

Figure 10 shows the roll inertia estimation. The RLS algorithm does not perform as well as the 
gPC-EKF estimate here, and ends with a non-trivial biasing of the parameter estimate.  

 

FIGURE 10 ROLL INERTIA ESTIMATION 

The recursive least squares algorithm [10] starts out with good initial estimates for the 
parameter values but still has drastic variations in the beginning, and some of the parameters converge 
to incorrect values. The gPC-EKF is able to simultaneously estimate all four parameters without any 
serious variations, even though it starts with poor initial conditions. Overall, the RLS algorithm performs 
a better estimate than the gPC-EKF for this system without noise.  

The same simulation is performed but with a white noise process added to the synthetic sensors. 
The noise is a 𝟎.𝟏 variance white noise process.  

Table 4 defines the gPC-EKF tuneable coefficients.  
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TABLE 4 PARAMETER VALUES FOR GPC-EKF REGRESSION SYSTEM WITH NOISE 

Poly Order 2 

Q 4 

Time Step (S) 0.01 

𝒄 0 

𝒄𝟏 1/2000 

𝒄𝟐 1/2000 

𝒄𝟑 1/1000 

𝒄𝟒 1/2000 

R 0.1 

 

Figure 11 shows the CG height estimations. Note that only a small amount of noise causes the 
RLS algorithm to converge to an incorrect value. The gPC-EKF, however, is able to perform the 
estimation.  

 

FIGURE 11 HEIGHT ESTIMATION WITH SENSOR NOISE 

Figure 12 shows the mass estimation. The RLS algorithm is able to get close to the correct value, 
but does not perform as well as it did without the added noise. The gPC-EKF method performs a better 
estimation than the RLS.  
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FIGURE 12 MASS ESTIMATION WITH SENSOR NOISE 

Figure 13 shows the pitch inertia estimation. Both the RLS and the gPC-EKF methods are able to 
perform the parameter estimation here with acceptable accuracy.  

 

FIGURE 13 PITCH INERTIA ESTIMATION WITH SENSOR NOISE 

Figure 14 shows the roll inertia estimation. Here the RLS algorithm does not converge to the 
actual value and instead converges to a value with significant error. The gPC-EKF performs the 
estimation with similar accuracy to the system without sensor noise.  
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FIGURE 14 ROLL INERTIA ESTIMATION WITH SENSOR NOISE 

The gPC-EKF has many different values that can be tuned to ensure good parameter estimations. 
As the sensor noise values increase there are many coefficients that can be tuned to improve the filter’s 
convergence. In this case a slight modification of the noise covariance matrix enables the parameter 
estimation with noisy data. The RLS filter cannot handle the added noise and has both the CG height and 
the roll inertia values converge to incorrect values.  

 
CONCLUSIONS AND RECOMMENDATIONS 

 

The improvements to the gPC-EKF significantly improve the filter’s ability to converge in both 
states and parameters for state space systems. The filter is able to perform the standard state 
estimations of the EKF once the modifications are in place.  

For regression systems, the gPC-EKF shows a significant improvement over the RLS algorithm. 
The gPC-EKF is capable of performing the parameter estimations even when there is noise added to the 
measurements and the initial conditions are poor.  

The gPC-EKF for these examples runs about three times faster than real-time on a first-generation laptop 
Intel i5 processor. The regression system handles up to about seven parameters for real-time 
estimations. The state space filter depends much more heavily on the method of forward integration, the 
functions, and the time-steps needed for the integrations. In general, for real-time applications, the 
number of parameters should remain small (1-3). 
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PART 2: REAL-TIME VEHICLE PARAMETER ESTIMATION 
 
PROBLEM 
 

ABSTRACT 

Parameter estimation for vehicle systems is in general a challenging topic from both sensor 
instrumentation and modeling perspectives. Modeling vehicle systems is a rather complex process, 
especially considering the numerous unknown effects on the system, such as, for example, aerodynamic 
effects, road grade and bank angles, roll and pitch kinematics, and suspension nonlinearities. This study 
develops a method that is able to estimate several vehicle parameters with high accuracy for regular 
driving behavior. The parameter estimations are performed using the polynomial chaos-based extended 
Kalman filter. This method is a computationally efficient, derivative free, iterative, non-linear regression 
technique which is able to estimate multiple parameters in real time. This report presents the results 
obtained for estimating the location of the CG of the vehicle in all three directions, an estimate of the 
coefficient of aerodynamic drag, as well as the sprung mass of the vehicle using the proposed technique. 
Real test data have been used for validation purposes. 

INTRODUCTION 

Vehicle rollover events are highly nonlinear. These events are difficult to prevent and even harder 
to detect. Accurate knowledge of the vehicle parameters is critical to vehicle stability. 

  This study presents a method that is capable of extracting multiple vehicle parameters in real 
time. The vehicle parameters that are estimated are the vehicle’s center of gravity (CG) in the horizontal 
plane, the mass of the vehicle, the coefficient of aerodynamic drag, and the distances from the CG to the 
roll and pitch centers. The method is applied to a vehicle performing regular driving in two different 
environments: a rural road and an urban area. The parameters that can be validated are the vehicle’s 
mass, and lateral and longitudinal CG positions. These parameters are estimated to high accuracy.  

The goal of this study was to describe a parameter estimation method that can be implemented 
on a vehicle in real time for regular driving purposes. There should be no limiting assumptions, and the 
system should be capable of running for extended periods of time. 

The vehicle parameter estimations are performed by the generalized polynomial chaos extended 
Kalman filter for regression systems. The generalized polynomial chaos technique is a computationally 
efficient method for propagation of uncertain parameters through dynamical systems [1, 2]. The gPC-EKF 
is a regression technique that preserves the structure of the nonlinear equations, unlike recursive least 
squares. The preservation of the structure enables a better estimate of the parameter values. 

The gPC-EKF for regression systems was developed simultaneously with this research. The method is 
detailed in [3]. 
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APPROACH 
 

VEHICLE MODEL 

Modeling of vehicle systems is complicated. There are many effects that cannot be accounted for 
(aerodynamic, road excitation, roll/pitch center mechanics, etc.) which are important effects. For 
parameter estimation, the more accurate the model and the more knowledge about the system inputs, 
the better the parameter estimation schemes operate. Model-based parameter estimation that includes 
forward integrations is generally not applicable due to errors in the modeling of the vehicle.  

The model proposed here is a regression system that does not require forward integration. This 
model is based off of a load transfer model (LTM). The model uses the force balance between suspension 
struts to predict the parameter values. The standard LTM is a model that attempts to balance lateral or 
longitudinal acceleration forces with the transfer of forces at the suspension struts. This model is a fairly 
general model which is capable of dealing with most of the effects that a vehicle experiences during 
regular driving. Wong [4] derives some of the basics of the model, and here the generalized model is 
designed and expanded to account for some of the aerodynamic effects.  

Load Transfer Model 
During dynamic maneuvers the changes in forces at each corner of a vehicle can be described as 

load or weight transfer from one section of the vehicle to another [4, 5]. This occurs purely because of 
the external forces applied to the vehicle, and is not an actual transfer of mass. 

For a vehicle that is cornering, the load transfer from one side of the vehicle to another is defined 
as:  

∆𝑾 =
𝒎 𝑨𝒛 𝑨𝒙 𝒉𝒓

𝑩
 

 

(34) 

 

Where 𝒎 is the mass of the vehicle, 𝑨𝒛 is the vertical acceleration that the vehicle feels, 𝑨𝒙 is the 
centrifugal acceleration in g’s, 𝒉𝒓 is the distance that the center of gravity is above the roll center of the 
vehicle, and 𝑩 is the track width of the vehicle. This is calculated as the moment about the roll center of 
the vehicle. A similar moment calculation about the pitch center can be performed to estimate the 
weight transfer during acceleration or braking. A diagram of this model can be seen in Figure 15. 
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FIGURE 15 VEHICLE MODEL DIAGRAM 

 

When each of these effects is summed individually at the suspension points of the vehicle, the 
load at each corner is: 

𝑭𝒇𝒍 =
𝒎𝑨𝒛
𝑩𝑳 �𝒃𝒓 − 𝑨𝒚𝒃𝒉𝒓 − 𝑨𝒙𝒓𝒉𝒑� −

𝒓𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

 

(35) 

𝑭𝒇𝒓 =
𝒎𝑨𝒛
𝑩𝑳

[𝒃𝒍 + 𝑨𝒚𝒃𝒉𝒓 − 𝑨𝒙𝒍𝒉𝒑] −
𝒍𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

 

(36) 

𝑭𝒓𝒍 =
𝒎𝑨𝒛
𝑩𝑳 �𝒂𝒓 − 𝑨𝒚𝒂𝒉𝒓 + 𝑨𝒙𝒓𝒉𝒑�+

𝒓𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

 

(37) 

𝑭𝒓𝒓 =
𝒎𝑨𝒛
𝑩𝑳 �𝒂𝒍 + 𝑨𝒚𝒂𝒉𝒓 + 𝑨𝒙𝒍𝒉𝒑�+

𝒍𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

 

(38) 

 

The terms 𝒂,𝒃, 𝒍, 𝒓,𝑳,𝒉𝒑 are the distance from the front axle to the CG, distance from the rear 
axle to the CG, distance to the CG from the left track, distance to the CG from the right track, wheelbase 
of the vehicle, and the height of the CG above the pitch center of the vehicle. 𝑭𝒊 is the force in the 
suspension for the front left (fl), front right (fr), rear left (rl), and rear right (rr), respectively. Here, 𝑨𝒚 is 
the lateral acceleration at the CG, and 𝑨𝒙 is the longitudinal acceleration at the CG. 𝑨𝒚 and 𝑨𝒙 are 

measured in g’s, 𝑨𝒛 is measured in 𝒎
𝒔

. 

The term C is what incorporates the aerodynamic drag. In general this term should include more 
effects than just the vehicle’s forward velocity, such as wake, drafting, and wind effects. These effects 
are much more complicated to model and are therefore assumed to be negligible enough (which is to say 
that the estimation term will evaluate a “good enough” value for the parameter estimate). 

The effects of aerodynamic forces are significant enough that they cannot be neglected. For an 
SUV with a value for 𝑪𝒅𝑨 ≈ 𝟏, the aerodynamic drag force applied to a vehicle travelling at 𝟏𝟏𝟎 𝑲𝒎/𝑯 
is approximately 575 N. 
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Modified Load Transfer Model (MLTM) 
The load transfer model can be applied to the vehicle using linear accelerometers at each 

suspension strut, rather than an estimate of the vertical acceleration at the CG of the vehicle. In practice 
this is a more reasonable method of estimation, as the acceleration is generally not known at the center 
of gravity. For an unknown center of gravity, the measured CG vertical acceleration can be approximated 
as: 

�̈� =
𝟏
𝟒 �
𝑨𝒛,𝒇𝒍 + 𝑨𝒛,𝒇𝒓 + 𝑨𝒛,𝒓𝒍 + 𝑨𝒛,𝒓𝒓 + 𝟐(𝒓 − 𝒍)

∗ �̈� + 𝟐(𝒃 − 𝒂)�̈�� 

(39) 

 

This model returns an estimate of the mass at each corner of the vehicle rather than an estimate 
of the total mass of the vehicle. These estimations are then used for estimating the total mass and the 
center of gravity of the vehicle.  

The load transfer equations are transformed: 

𝑭𝒇𝒍 = 𝒎𝒇𝒍𝑨𝒛,𝒇𝒍 −
𝒎� �̈�
𝑩𝑳

𝑨𝒚𝒃𝒉𝒓 −
𝒎� �̈�
𝑩𝑳

𝑨𝒙𝒓𝒉𝒑

−
𝒓𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

(40) 

𝑭𝒇𝒓 = 𝒎𝒇𝒓𝑨𝒛,𝒇𝒓 +
𝒎� �̈�
𝑩𝑳

𝑨𝒚𝒃𝒉𝒓 −
𝒎� �̈�
𝑩𝑳

𝑨𝒙𝒍𝒉𝒑  

−
𝒍𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

(41) 

𝑭𝒓𝒍 = 𝒎𝒓𝒍𝑨𝒛,𝒓𝒍 −
𝒎� �̈�
𝑩𝑳

𝑨𝒚𝒂𝒉𝒓 +
𝒎� �̈�
𝑩𝑳

𝑨𝒙𝒓𝒉𝒑

+
𝒓𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

(42) 

𝑭𝒓𝒓 = 𝒎𝒓𝒓𝑨𝒛,𝒓𝒓 +
𝒎� �̈�
𝑩𝑳

𝑨𝒚𝒂𝒉𝒓 +
𝒎� �̈�
𝑩𝑳

𝑨𝒙𝒍𝒉𝒑

+
𝒍𝒉𝒑𝑽𝒙𝟐𝑪
𝑩𝑳

 

(43) 

𝑭𝒃𝒐𝒖𝒏𝒄𝒆 = 𝑭𝒇𝒍 + 𝑭𝒇𝒓 + 𝑭𝒓𝒍 + 𝑭𝒓𝒓
= 𝒎𝒇𝒍𝑨𝒛,𝒇𝒍 +𝒎𝒇𝒓𝑨𝒛,𝒇𝒓
+ 𝒎𝒓𝒍𝑨𝒛,𝒓𝒍 + 𝒎𝒓𝒓𝑨𝒛,𝒓𝒓 

(44) 

 

With the total bounce of the vehicle: 

𝑭𝒃𝒐𝒖𝒏𝒄𝒆 = 𝒎𝒇𝒍𝑨𝒛,𝒇𝒍 + 𝒎𝒇𝒓𝑨𝒛,𝒇𝒓 + 𝒎𝒓𝒍𝑨𝒛,𝒓𝒍
+ 𝒎𝒓𝒓𝑨𝒛,𝒓𝒓 

(45) 

 

Here the estimates for 𝒎�  are the sum of the estimates for 𝒎𝒇𝒍,𝒎𝒇𝒓,𝒎𝒓𝒍,𝒎𝒓𝒓, where each of 
these is the mass estimate at each corner of the vehicle. Due to the number of uncertain parameters it is 
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not possible to perform the gPC-EKF estimation on this with the desire of a real-time estimation. This 
model has too many uncertain parameters.  

The lateral and longitudinal positions can be calculated through basic geometry of the masses at 
each of the suspension struts: 

𝒂 = (𝒎𝒓𝒍 + 𝒎𝒓𝒓)/𝒎�  (46) 
𝒍 = (𝒎𝒇𝒓 + 𝒎𝒓𝒓)/𝒎�  (47) 

 

With these substitutions the MLTM becomes: 

𝑭𝒇𝒍

= 𝒎𝒇𝒍 𝑨𝒛,𝒇𝒍 −
�𝒎𝒇𝒍 +𝒎𝒇𝒓��̈�

𝑩
𝑨𝒚𝒉𝒓

−
�𝒎𝒇𝒍 + 𝒎𝒓𝒍��̈�

𝑳
𝑨𝒙𝒉𝒑

−
𝒉𝒑𝑽𝒙𝟐𝑪
𝑳

(
𝒎𝒇𝒍 +𝒎𝒓𝒍

𝒎𝒇𝒍 + 𝒎𝒇𝒓 +𝒎𝒓𝒍 + 𝒎𝒓𝒓
) 

(48) 

𝑭𝒇𝒓

= 𝒎𝒇𝒓 𝑨𝒛,𝒇𝒓 +
(𝒎𝒇𝒍 +𝒎𝒇𝒓)�̈�

𝑩
𝑨𝒚𝒉𝒓

−
(𝒎𝒇𝒓 + 𝒎𝒓𝒓)�̈�

𝑳
𝑨𝒙𝒉𝒑  

−
𝒉𝒑𝑽𝒙𝟐𝑪
𝑳

(
𝒎𝒇𝒓 +𝒎𝒓𝒓

𝒎𝒇𝒍 + 𝒎𝒇𝒓 +𝒎𝒓𝒍 + 𝒎𝒓𝒓
) 

(49) 

𝑭𝒓𝒍

= 𝒎𝒓𝒍 𝑨𝒛,𝒓𝒍 −
(𝒎𝒓𝒍 + 𝒎𝒓𝒓)�̈�

𝑩
𝑨𝒚𝒉𝒓

+
(𝒎𝒇𝒍 + 𝒎𝒓𝒍)�̈�

𝑳
𝑨𝒙𝒉𝒑

+
𝒉𝒑𝑽𝒙𝟐𝑪
𝑳

(
𝒎𝒇𝒍 +𝒎𝒓𝒍

𝒎𝒇𝒍 + 𝒎𝒇𝒓 +𝒎𝒓𝒍 + 𝒎𝒓𝒓
) 

(50) 

𝑭𝒓𝒓

= 𝒎𝒓𝒓 𝑨𝒛,𝒓𝒓 +
(𝒎𝒓𝒍 + 𝒎𝒓𝒓)�̈�

𝑩
𝑨𝒚𝒉𝒓

+
(𝒎𝒇𝒓 + 𝒎𝒓𝒓)�̈�

𝑳
𝑨𝒙𝒉𝒑

+
𝒉𝒑𝑽𝒙𝟐𝑪
𝑳

(
𝒎𝒇𝒓 +𝒎𝒓𝒓

𝒎𝒇𝒍 + 𝒎𝒇𝒓 +𝒎𝒓𝒍 + 𝒎𝒓𝒓
) 

(51) 

𝑭𝒃𝒐𝒖𝒏𝒄𝒆 = 𝒎𝒇𝒍𝑨𝒛,𝒇𝒍 + 𝒎𝒇𝒓𝑨𝒛,𝒇𝒓 + 𝒎𝒓𝒍𝑨𝒛,𝒓𝒍
+ 𝒎𝒓𝒓𝑨𝒛,𝒓𝒓 

(52) 

 

With the uncertain parameters: 

23 
 



𝒑 = �𝒎𝒇𝒍,𝒎𝒇𝒓,𝒎𝒓𝒍,𝒎𝒓𝒓,𝒉𝒓,𝒉𝒑,𝑪�𝑻 (53) 

 

METHODOLOGY 
 

EXPERIMENTAL VEHICLE 

The experimental data is collected on a Land Rover Defender 110 off-road vehicle. This specific 
experimental vehicle is fitted with a prototype Hydro-pneumatic spring-damper suspension system 
developed by the Vehicle Dynamics Group of the University of Pretoria. Each strut is equipped with a 
pressure transducer which measures the pressure above each strut piston. The pressure is used to 
determine the combined damping and spring forces at each strut and thus accounts for all forces, except 
for friction, in the strut. Each strut is also equipped with a linear potentiometer displacement transducer 
which is used to obtain each strut’s displacement.  Two accelerometers are mounted vertically on each 
strut, a 10g accelerometer on the unsprung mass and a 4g accelerometer on the sprung mass. A 4g tri-
axial accelerometer is also placed at approximately the center of mass of the vehicle.  The vehicle is also 
equipped with a Racelogic VBox 3 GPS receiver. The GPS receiver is used to accurately determine the 
vehicle speed and provides additional information such as latitude, longitude, heading and height above 
sea level. The GPS information is logged separately but synchronized by means of a trigger signal as well 
as the vehicle speed which is recorded on both data acquisition systems.  All vehicle mass and inertia 
properties were obtained experimentally [6]. Figure 16 shows the instrumented land rover that was used 
for the experiments. 

 
FIGURE 16 INSTRUMENTED LAND ROVER 

VEHICLE DATA SETS 

Two different data sets were used in evaluating the parameter estimation. The first data set was 
obtained on a winding rural road with many filled and unfilled potholes. The road is therefore very 
uneven and bumpy. The test was conducted at normal driving speeds with traffic, thus a non-constant 
speed profile is obtained with typical braking and acceleration pattern of an everyday driver.  The uneven 
road surface and speed profile in conjunction with the road cornering, embankment and grade results in 
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considerable excitation to the vehicle. The second data set was obtained in an urban environment with a 
much smoother road surface and very little cornering. Most of the road excitation is as a result of the 
road grade.  Thus, the urban road has a lot less road excitation and more excitation in the form of 
braking and accelerating.  

VEHICLE PARAMETER ESTIMATION TECHNIQUE 

The generalized polynomial chaos extended Kalman filter (gPC-EKF) is applied to the vehicle for 
the parameter estimation. The gPC-EKF for regression systems is a real-time, nonlinear, derivative free, 
iterative regression method.  

For the estimation method to apply, a state vector of the regression equations and parameter is created. 
For the LTM the state vector is: 

𝒙
= �𝑭𝒇𝒍,𝑭𝒇𝒓,𝑭𝒓𝒍,𝑭𝒓𝒓,𝑭𝒃𝒐𝒖𝒏𝒄𝒆,𝒎,𝒂, 𝒍,𝒉𝒓,𝒉𝒑,𝑪�𝑻 

(54) 

 

The details of the estimation technique are included in [3]. 

 

FINDINGS 
 

VEHICLE PARAMETER ESTIMATION 

The parameter estimation technique is applied to both the LTM and MLTM for comparison. For the 
Urban data set the mass estimation can be found in Figure 17, the lateral position estimation is 
performed in Figure 18, and the longitudinal position estimate is demonstrated in Figure 19. 

 

FIGURE 17 MASS ESTIMATION FOR URBAN DATA SET 
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FIGURE 18 LATERAL POSITION ESTIMATION FOR URBAN DATA SET 

 

FIGURE 19 LONGITUDINAL POSITION ESTIMATE FOR URBAN DATA SET 

The error analysis of the parameter estimations performed for the Urban data set are shown in Table 5. 

TABLE 5 PARAMETER ESTIMATION RESULTS FOR THE URBAN DATA SET 

Urban Data 
Set 

Mass Longitudinal 
Position 

Lateral 
Position 

Estimated 
Value (LTM) 

1891 1.412 0.895 

Error (LTM) 0.96% 1.02% 0.93% 
Estimated 
Value 
(MLTM) 

1891 1.415 0.8934 

Error 
(MLTM) 

0.96% 0.81% 0.75% 

26 
 



The parameter estimations for the Rural data set are performed. The mass estimation is 
performed in Figure 20.  

 

FIGURE 20 MASS ESTIMATE FOR RURAL DATA SET 

Figure 21 shows the parameter estimation for the lateral position of the vehicle’s CG.  

 

FIGURE 21 LATERAL POSITION ESTIMATE FOR RURAL DATA SET 

Figure 22 shows the longitudinal position estimate for the vehicle’s CG. 
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FIGURE 22 LONGITUDINAL POSITION ESTIMATE FOR RURAL DATA SET 

The final parameter values and errors for the Rural data set are shown in Table 6.  

TABLE 6 PARAMETER ESTIMATION RESULTS FOR THE RURAL DATA SET 

Rural Data 
Set 

Mass Longitudinal 
Position 

Lateral 
Position 

Estimated 
Value (LTM) 

1920 1.412 0.8743 

Error (LTM) 2.57% 1.02% 1.4% 
Estimated 
Value 
(MLTM) 

1919 1.417 0.8761 

Error 
(MLTM) 

2.46% 0.67% 1.2% 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

Both methods show exceptional ability to estimate the parameters in real-time within error 
bounds of 0.6% and 2.6%. The reason for creating the MLTM is that it has a significantly reduced need 
for prior knowledge about the CG location. The LTM requires that sensors be placed at the CG of the 
vehicle. Obviously, if that is already known, then this whole scheme is unnecessary. The MLTM is 
designed to remove that requirement through the ability to estimate the CG accelerations through the 
accelerometers placed at the four corners of the vehicle.  

The errors in the parameters are primarily caused from instrumentation. The accuracy of the 
parameter estimate is directly proportional to the accuracy of the sensors. Slight misalignments of the 
sensors or the filtering method for the data play a large role in the accuracy of the parameter estimate. 
The values for the actual values are approximate, as they are measured before the tests are conducted. 
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The difference in mass between the Rural and the Urban tests can is most likely associated with the 
consumption of fuel. 

The values shown are the parameters that can be validated. There are also estimates for the 
vehicle’s aerodynamic drag, and distances from the CG to the roll and pitch centers of the vehicle. These 
parameter estimates are similar for both models. The value for the aerodynamic drag is incorrect 
compared to the experimentally measured value. The aerodynamic effects do not sum at the CG of the 
vehicle, instead they interact with the vehicle in a way that is consistent with the topology of the 
vehicle’s surface. The value for the coefficient of drag is therefore a representative value of the 
aerodynamic effects at the CG of the vehicle with respect to the load transfer mechanics and not a good 
estimate of the actual drag effects. 

Because the CG of the vehicle is just about at the half-width, half-length of the vehicle the two 
methods show comparable results. If the CG of the vehicle were different these methods would show 
more significant differences. The MLTM method shows a general improvement over the LTM, as it was 
expected.  
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PART 3:  GPC-BASED BATTERY CHARGE AND HEALTH ESTIMATION 
 
PROBLEM 
 
Abstract 

In this effort, we use the generalized Polynomial Chaos theory (gPC) for the real-time state and 
parameter estimation of electrochemical batteries. We use an equivalent circuit battery model, 
comprising two states and five parameters, and then formulate the online parameter estimation 
problem using battery current and voltage measurements. Using a combination of the conventional 
recursive gradient-based search algorithm and gPC framework, we propose a novel battery parameter 
estimation strategy capable of estimating both battery state-of-charge (SOC) and parameters related to 
battery health, e.g., battery charge capacity, internal resistance, and relaxation time constant. Using a 
combination of experimental tests and numerical simulations, we examine and demonstrate the 
effectiveness of the proposed battery estimation method.   

 
1-Introduction 

This study examines the problem of estimating the states and parameters of electrochemical batteries 
for real-time battery management and control applications. Simultaneous battery state-of-charge (SOC) 
and state-of-health (SOH) estimation has recently gained significant attention in the scientific community 
due to the rapid growth of battery-powered systems, such as potable electronics, electric vehicles, and 
stationary grid storage systems, and the need for scientific analysis and design. This study attempts to 
address the battery SOC/SOH estimation problem by combining the generalized polynomial chaos (gPC) 
theory with the recursive parameter estimation technique.  

The current battery estimation literature embodies a large number of studies on the SOC estimation 
problem. Methods such as mixed coulomb-counting with voltage correction [1, 2] and Kalman filtering 
[3-5] are among the most widely-used methods on this front. The battery SOH estimation problem is, 
however, a less mature area, mainly because of the generic definition of SOH which can result in various 
interpretations. In most studies, SOH is related to the degradation of specific parameters, such as battery 
internal resistance, or electrochemical reaction rates, etc. Methods such as, sub-space parameter 
estimation [6], particle filtering [7], Lyapunov-based adaptive estimation [8], and nonlinear PDE-based 
least squares estimation [9] have been proposed, and in some cases experimentally implemented.  

Most of the current battery health estimation methods suffer at least from one of the following 
weaknesses: (i) Using linear circuit models for batteries which are essentially nonlinear, (ii) choosing the 
battery health-related parameters arbitrarily, and not including the battery charge capacity in the list of 
unknown parameters to be estimated, and (iii) deriving the estimation scheme based on a set of specific 
charge/discharge cycles, rather than assuming a broader range of cycling conditions.  

In this study, we address the above problems by simultaneously estimating battery SOC, charge capacity, 
internal resistance, and the relaxation time constant using a second order equivalent circuit model, the 
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generalized polynomial chaos (gPC) theory, and the recursive parameter estimation technique. We also 
account for the nonlinearity of battery open-circuit voltage through a quasi-linearization method. The 
results show the proposed scheme provides an accurate estimation of the battery parameters and states 
in both short-term SOC estimation and long-term health estimation and monitoring applications, under 
arbitrary cycling conditions.       

The remainder of the presentation is organized as follows: In section 2, a mathematical description of the 
model is provided. Section 3, formulates the battery estimation problem and uses the gPC and recursive 
estimation methods to obtain the parameter update laws. Section 4 evaluates the developed estimator 
for an experimentally characterized LiFePO4 battery model in a plug-in hybrid electric vehicle (PHEV) 
application. Finally, Section 5 summarizes the study’s key conclusions.     

APPROACH 
 
2- System Model 

The estimation method proposed in this strategy is based on a second-order equivalent circuit battery 
model shown in Figure 23. The circuit consists of a SOC-dependent voltage source, so-called the open 
circuit voltage, Voc, in series with a resistor, R, and a parallel resistor/capacitor pair, Rr and Cr, 
representing the battery relaxation dynamics. When a positive current is applied to the battery (as 
shown in the picture) the open-circuit voltage increases as a result of charge accumulation in the cell. In 
contrary, when we discharge the cell, the open-circuit voltage drops due to the loss of stored charge. The 
mathematical description of this system can be written as:   

 
FIGURE 23  A SECOND-ORDER EQUIVALENT CIRCUIT BATTERY MODEL 

 

�
𝑺𝑶𝑪̇ (𝒕) = 𝟏

𝑸
𝑰(𝒕)                         

𝑽�̇�(𝒕) = − 𝟏
𝑹𝒓𝑪𝒓

𝑽𝒓(𝒕) + 𝟏
𝑪𝒓
𝑰(𝒕)

                                               (55) 

                                                   𝑽(𝒕) = 𝑽𝒐𝒄�𝑺𝑶𝑪(𝒕)� + 𝑽𝒓(𝒕) + 𝑹𝑰(𝒕)                                       (56) 

where Q is the battery charge capacity, I is the applied (charging) current, Vr is the voltage drop across 
the resistor/capacitor pair, and V is the battery terminal (output) voltage.   

The overarching goal of this study is to find a solution for estimating the parameters of the battery 
model, i.e., Q, R, Cr , and Rr, as well as the battery SOC trajectory from poor but reasonable initial 
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guesses. For the SOC estimation, we add its initial value, SOC(0), to the list of unknown parameters, and 
adjust the SOC estimate by estimating its initial value. The initial value of the relaxation voltage, i.e., 
Vr(0), is assumed to be zero in this study. This is a reasonable assumption since the magnitude of 
relaxation voltage is small (for most real battery chemistries), and drops to zero exponentially, when the 
battery is put to rest. 

METHODOLOGY 
 
3- Battery Parameter and State Estimation 

The objective of the battery estimation problem here is to minimize the integral of the squared output 
error between the model and the actual system, over the unknown model parameters: 

 
𝒎𝒊𝒏

𝑸,𝑹,𝑪𝒓,𝑹𝒓,𝑺𝑶𝑪(𝟎)
   𝑱(𝒕) =

𝟏
𝟐
� �𝑽(𝝉) − 𝑽𝒎(𝝉)�𝟐𝒅𝝉
𝒕

𝟎
 (57) 

where V and Vm are the model and the measured battery voltages, respectively.  

To facilitate the estimator design, as will be thoroughly explained in Section 3.2, we transfer most of the 
system parameters from the state equations to the output equation through a change of variables, and 
linearize the output equation around the current SOC value. The modified model based on which the 
estimator is designed is given by:  

��̇�𝟏
(𝒕) = 𝑰(𝒕),                          𝒙𝟏(𝟎) = 𝟎

�̇�𝟐(𝒕) = −𝝈𝒙𝟐(𝒕) + 𝑰(𝒕),     𝒙𝟐(𝟎) = 𝟎                                          (58) 

𝑽(𝒕) = 𝑽𝟎(𝒕) + 𝜶𝑪𝟎(𝒕)�𝒙𝟏𝟎 + 𝒙𝟏(𝒕)� + 𝜷𝒙𝟐(𝒕) + 𝑹𝑰(𝒕)                          (59) 

where  

𝒙𝟏(𝒕) = 𝑸 ∙ �𝑺𝑶𝑪(𝒕) − 𝑺𝑶𝑪(𝟎)�                                                    (60) 

 𝒙𝟐(𝒕) = 𝑪𝒓𝑽𝒓(𝒕)                                                               (61) 

   𝑽𝟎(𝒕) = 𝑽𝒐𝒄�𝑺𝑶𝑪(𝒕)� −
𝝏𝑽𝒐𝒄(𝑺𝑶𝑪)
𝝏𝑺𝑶𝑪 �

@𝑺𝑶𝑪=𝑺𝑶𝑪(𝒕)
𝑺𝑶𝑪(𝒕) (62) 

 
   𝑪𝟎(𝒕) =

𝝏𝑽𝒐𝒄(𝑺𝑶𝑪)
𝝏𝑺𝑶𝑪 �

@𝑺𝑶𝑪=𝑺𝑶𝑪(𝒕)
 (63) 

  𝒙𝟏𝟎 = 𝑸 ∙ 𝑺𝑶𝑪(𝟎)                                                            (64) 

   𝜶 =
𝟏
𝑸

, 𝜷 =
𝟏
𝑪𝒓

, 𝝈 =
𝟏

𝑹𝒓𝑪𝒓
 (65) 

Eq. (58) shows that the modified state equations contain only one unknown parameter, i.e., σ. In this 
study, we treat the state equation containing the unknown parameter as a stochastic differential 
equation, and use the gPC theory to solve it. This process is discussed in detail in the next section.  
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3.1. Approximation of Battery Relaxation Dynamic Using gPC 

Generalized polynomial chaos theory is a powerful method for solving stochastic differential equations 
[10, 11]. The application of gPC in online parameter estimation has been investigated in different 
research studies [12-14]. In this section, we apply the gPC theory to the battery estimation problem 
under study. The details of the gPC-based recursive parameter estimation method can be found in [14]. 

To solve the differential equation containing parameter σ, we treat this parameter as a uniformly 
distributed stochastic variable between two known upper and lower bounds, i.e., σmin and σmax, and then 
apply gPC theory on the second state equation in Eq. (58) to transfer σ to the output equation for 
recursive estimation. To simplify the process further, we map σ to another uniformly distributed 
stochastic variable 𝝃 ∈ [−𝟏  𝟏]:  

𝝈 =  𝝈𝟎 + 𝝃𝝈𝟏                                                             (66) 

where 

 𝝈𝟎 = 𝟏
𝟐

(𝝈𝒎𝒂𝒙 +  𝝈𝒎𝒊𝒏)                                                     (67) 

𝝈𝟏 = 𝟏
𝟐

(𝝈𝒎𝒂𝒙 −  𝝈𝒎𝒊𝒏)                                                     (68) 

Following the gPC framework, we can write the solution of the stochastic differential equation as a 
function of the stochastic variable and time, and approximate it by a finite sum expansion as follows:                                        

 
𝒙𝟐(𝒕) = 𝒇(𝝃, 𝒕) ≈�𝝋𝒊(𝝃)𝒒𝒊(𝒕)

𝑵

𝒊=𝟏

 (69) 

where 𝝋𝒊’s are a set of polynomial chaos functions, satisfying an orthogonality condition given by:  

 
� 𝝋𝒊(𝝃)𝝋𝒋(𝝃)𝒅𝝃 = 𝟎, 𝒊𝒇 𝒊 ≠ 𝒋
𝟏

−𝟏
 (70) 

Under certain assumptions [10], the approximation becomes exact as 𝑵 → ∞. 

Taking the time-derivative of Eq. (69) and replacing it (along with Eq. (66)) in Eq. (58) results in: 

 
�𝝋𝒊(𝝃)�̇�𝒊(𝒕)
𝑵

𝒊=𝟏

= −(𝝈𝟎 + 𝝃𝝈𝟏)�𝝋𝒊(𝝃)𝒒𝒊(𝒕)
𝑵

𝒊=𝟏

+ 𝑰(𝒕) (71) 

To proceed with the above equation, two methods from the gPC literature can be used: (i) The Galerkin 
projection method [10], and (ii) the collocation method [15]. For linear differential equations, the Glerkin 
approach has been widely used due to its simplicity and effectiveness. To apply the Galerkin projection 
method to Eq. (71), we first multiply the two sides of Eq. (71) by 𝝋𝒋(𝝃) and then integrate over 𝝃. This 
results in:  
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�̇�𝒊(𝒕)� 𝝋𝒊

𝟐(𝝃)𝒅𝝃
𝟏

−𝟏
= −𝝈𝟎𝒒𝒊(𝒕)� 𝝋𝒊

𝟐(𝝃)𝒅𝝃 −
𝟏

−𝟏
                                                

                                           𝝈𝟏�𝒒𝒋(𝒕)� 𝝃𝝋𝒊(𝝃)𝝋𝒋(𝝃)𝒅𝝃
𝟏

−𝟏

𝑵

𝒋=𝟏

+ 𝑰(𝒕)� 𝝋𝒊(𝝃)𝒅𝝃
𝟏

−𝟏
 

(72) 

These equations can be written in the matrix form as: 

�̇�(𝒕) = 𝑨𝒒(𝒕) + 𝑩𝑰(𝒕)                                                      (73) 

where  

𝒒(𝒕) = [𝒒𝟏(𝒕),𝒒𝟐(𝒕), … ,𝒒𝑵(𝒕)]𝑻                                              (74) 

 
𝑨 ∈ ℝ𝑵×𝑵, 𝑨𝒊𝒋 = −𝝈𝟎𝜹𝒊𝒋 − 𝝈𝟏

∫ 𝝃𝝋𝒊(𝝃)𝝋𝒋(𝝃)𝒅𝝃𝟏
−𝟏

∫ 𝝋𝒊
𝟐(𝝃)𝒅𝝃𝟏

−𝟏

 (75) 

 
 

𝑩 ∈ ℝ𝑵×𝟏, 𝑩𝒊 =
∫ 𝝋𝒊(𝝃)𝒅𝝃𝟏
−𝟏

∫ 𝝋𝒊
𝟐(𝝃)𝒅𝝃𝟏

−𝟏

 (76) 

where δij is the Kronecker delta function, i.e., δij = 1, if i = j , and δij = 0 otherwise. 

Eq. (73) is a deterministic differential equation which can be computed numerically in the real-time by 
choosing an orthogonal polynomial chaos basis and applying the current measurement signal. In the 
next section, we combine Eq. (73) with the original system model, i.e., Eq. (58), and derive a set of 
parameter update laws for the system unknown parameters using a recursive parameter estimation 
technique. 

   

3.2. Recursive Battery Parameter Estimation 

Using the gPC expansion of the battery relaxation dynamics, we can recast the system states as: 

��̇�𝟏
(𝒕) = 𝑰(𝒕),                     𝒙𝟏(𝟎) = 𝟎

�̇�(𝒕) = 𝑨𝒒(𝒕) + 𝑩𝑰(𝒕),    𝒒(𝟎) = 𝟎                                             (77) 

Moreover, by replacing Eq. (69) into Eq. (59), we can rewrite the output equation as follows: 

 
𝑽(𝒕) ≈ 𝑽𝟎(𝒕) + 𝜶𝑪𝟎(𝒕)�𝒙𝟏𝟎 + 𝒙𝟏(𝒕)� + 𝜷�𝝋𝒊(𝝃)𝒒𝒊(𝒕)

𝑵

𝒊=𝟏

+ 𝑹𝑰(𝒕) (78) 

Since our estimation problem uses an integral cost function (given by Eq. (57)) which can always grow 
with time and become numerically unbounded, we embed a forgetting factor term 𝝀 ∈ (𝟎 𝟏] to give 
more emphasis to the most recent measurements: 
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𝒎𝒊𝒏

𝜽=[𝜶,𝑹,𝜷,𝝃,𝒙𝟏𝟎]
 𝑱(𝒕) =

𝟏
𝟐
� 𝝀(𝒕−𝝉)�𝑽(𝜽, 𝝉) − 𝑽𝒎(𝝉)�𝟐𝒅𝝉
𝒕

𝟎
 (79) 

One solution to the above estimation problem is to use a gradient descent-based parameter update law 
for the unknown parameters as follows: 

 𝜽�̇(𝒕) = −𝜞
𝝏𝑱(𝒕)
𝝏𝜽 �

𝜽=𝜽�(𝒕)
 (80) 

where 𝛤𝛤 is a diagonal estimator gain matrix, determining the convergence rate of the parameter 
estimates.  

Applying Eq. (80) to Eq. (79) and using Eqs. (77) and (78) results in the following parameter update laws:  

 
𝜶�̇(𝒕) = −𝜞𝜶 �� �𝝀(𝒕−𝝉)�𝑽𝟎(𝝉) − 𝑽𝒎(𝝉)�𝑪𝟎(𝝉)𝒙𝟏(𝝉)�𝒅𝝉

𝒕

𝟎

+ 𝒙�𝟏𝟎(𝒕)� �𝝀(𝒕−𝝉)�𝑽𝟎(𝝉)− 𝑽𝒎(𝝉)�𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎

+ 𝜶�(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎𝟐(𝝉)𝒙𝟏𝟐(𝝉)�𝒅𝝉
𝒕

𝟎

+  𝟐𝜶�(𝒕)𝒙�𝟏𝟎(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎𝟐(𝝉)𝒙𝟏(𝝉)�𝒅𝝉
𝒕

𝟎

+  𝜶�(𝒕)𝒙𝟏𝟎𝟐 (𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎𝟐(𝝉)�𝒅𝝉
𝒕

𝟎

+ ��𝜷�(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)𝒙𝟏(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+  ��𝜷�(𝒕)𝒙�𝟏𝟎(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+ 𝑹�(𝒕)� �𝝀(𝒕−𝝉)𝑰(𝝉)𝑪𝟎(𝝉)𝒙𝟏(𝝉)�𝒅𝝉
𝒕

𝟎

+ 𝑹�(𝒕)𝒙�𝟏𝟎(𝒕)� �𝝀(𝒕−𝝉)𝑰(𝝉)𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎
� 

(81) 

 
 

𝑹�̇(𝒕) = −𝜞𝒓 �� �𝝀(𝒕−𝝉)�𝑽𝟎(𝝉) − 𝑽𝒎(𝝉)�𝑰(𝝉)�𝒅𝝉
𝒕

𝟎
+ 𝜶�(𝒕)𝒙�𝟏𝟎(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎(𝝉)𝑰(𝝉)�𝒅𝝉

𝒕

𝟎

+ 𝜶�(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎(𝝉)𝒙𝟏(𝝉)𝑰(𝝉)�𝒅𝝉
𝒕

𝟎

+��𝜷�(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑰(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+ 𝑹�(𝒕)� �𝝀(𝒕−𝝉)𝑰𝟐(𝝉)�𝒅𝝉
𝒕

𝟎
� 

(82) 

 

35 
 



 
𝜷�̇(𝒕) = −𝜞𝜷 ���𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)�𝑽𝟎(𝝉) − 𝑽𝒎(𝝉)��𝒅𝝉

𝒕

𝟎
�

𝑵

𝒊=𝟏

+ ��𝜶�(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)𝒙𝟏(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+��𝜶�(𝒕)𝒙�𝟏𝟎(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+ ���𝜷�(𝒕)𝝋𝒊 �𝝃�(𝒕)�𝝋𝒋 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝒒𝒋(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒋=𝟏

𝑵

𝒊=𝟏

+ ��𝑹�(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑰(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

� 

(83) 

 

 
𝝃�̇(𝒕) = −𝜞𝝃 ���𝜷�(𝒕)𝝋𝒊

′ �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)�𝑽𝟎(𝝉) − 𝑽𝒎(𝝉)��𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+ ��𝜶�(𝒕)𝜷�(𝒕)𝝋𝒊
′ �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)𝒙𝟏(𝝉)�𝒅𝝉

𝒕

𝟎
�

𝑵

𝒊=𝟏

+��𝜶�(𝒕)𝒙�𝟏𝟎(𝒕)𝜷�(𝒕)𝝋𝒊
′ �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)�𝒅𝝉

𝒕

𝟎
�

𝑵

𝒊=𝟏

+ ���𝜷�𝟐(𝒕)𝝋𝒊 �𝝃�(𝒕)�𝝋𝒋
′ �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝒒𝒋(𝝉)�𝒅𝝉

𝒕

𝟎
�

𝑵

𝒋=𝟏

𝑵

𝒊=𝟏

+ ��𝑹�(𝒕)𝜷�(𝒕)𝝋𝒊
′ �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑰(𝝉)�𝒅𝝉

𝒕

𝟎
�

𝑵

𝒊=𝟏

� 

(84) 

 

where  𝝋𝒊
′ �𝝃�(𝒕)� = 𝝏𝝋𝒊(𝝃)

𝝏𝝃
�
𝝃=𝝃�(𝒕)

. 

 
𝒙�̇𝟏𝟎(𝒕) = −𝜞𝒙𝟏𝟎 �𝜶�(𝒕)� �𝝀(𝒕−𝝉)�𝑽𝟎(𝝉) − 𝑽𝒎(𝝉)�𝑪𝟎(𝝉)(𝝉)�𝒅𝝉

𝒕

𝟎

+  𝜶�𝟐(𝒕)𝒙�𝟏𝟎(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎𝟐(𝝉)�𝒅𝝉
𝒕

𝟎
+  𝜶�𝟐(𝒕)� �𝝀(𝒕−𝝉)𝑪𝟎𝟐(𝝉)𝒙𝟏(𝝉)�𝒅𝝉

𝒕

𝟎

+ ��𝜶�(𝒕)𝜷�(𝒕)𝝋𝒊 �𝝃�(𝒕)�� �𝝀(𝒕−𝝉)𝒒𝒊(𝝉)𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎
�

𝑵

𝒊=𝟏

+ 𝜶�(𝒕)𝑹�(𝒕)� �𝝀(𝒕−𝝉)𝑰(𝝉)𝑪𝟎(𝝉)�𝒅𝝉
𝒕

𝟎
� 

(85) 
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From Eqs. (27)-(31) and using Eqs. (6), (10) and (11), the original battery parameter and SOC estimates 
are obtained as: 

 
  𝑸�(𝒕) =

𝟏
𝜶�(𝒕)

, 𝑪�𝒓(𝒕) =
𝟏

𝜷�(𝒕)
, 𝑹�𝒓 =

𝜷�(𝒕)
𝝈𝟎 + 𝝈𝟏𝝃�(𝒕)

 (86) 

  𝑺𝑶�𝑪(𝒕) = 𝜶�(𝒕)�𝒙𝟏(𝒕) + 𝒙�𝟏𝟎(𝒕)�                                               (87) 

Note that the estimate of battery resistance, R, is directly computed from Eq. (82).  

Remark 1: In the parameter update laws, V0(t) and C0(t) are obtained by linearizing Voc(SOC) around the 
most recent estimate of battery SOC. This approximation can be initially inaccurate since the SOC 
estimate can be significantly far from the actual battery SOC. However, as the SOC estimate converges to 
the actual SOC, this approximation becomes more accurate, leading to reliable steady-state parameter 
estimation.    

Remark 2: All of the integral coefficients in the parameter update laws can be computed recursively, 
thereby, making the proposed estimation scheme a viable approach for real-time applications. 

FINDINGS 
 
4- Numerical Evaluation of the gPC-based Battery Estimator  

In this section, we evaluate the developed estimation method using numerical simulations. We first 
obtain a set of realistic battery parameter values using experimental data, to develop a representative 
battery model. We then pretend that the parameters of this model are not accurately known, and try to 
estimate them using the developed estimator. To apply a realistic current profile, we use a previously-
developed plug-in hybrid electric vehicle (PHEV) model to obtain battery current variation under a 
Federal drive cycle simulation. 

4.1. Development of a Representative Battery Model   

In this section, we use experimental battery data to obtain a set of realistic parameter values and open-
circuit voltage function for the battery model described in Section 2. Using a battery-in-the loop (BIL) test 
bed shown in Figure 24, we cycle an A123 Systems LiFePO4 battery cell to obtain its open circuit voltage 
as a function of SOC. The main component of the BIL test bed include a pair of Sorensen power supply 
and programmable electronic load for battery cycling, and a DS1103 dSPACE board for controlling the 
process in the Matlab/Simulink environment.  

The nominal charge capacity and voltage of the battery are 2 Amp-hours and 3.3 V, respectively. Figure 
25(a) shows the battery cell’s voltage variation between 2.2-3.8 V as a function SOC at the constant rate 
of 0.1C (±0.2A). Note that we have assumed this voltage range corresponds to the SOC range of 0-100%, 
since the operation of the battery cell below 2.2 V and above 3.8 V can result in severe damage to the 
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battery. We further limit the model to operate between 10-90% of the full SOC range to avoid steep 
changes in the voltage due to practical considerations. Figure 24(b) shows the charge/discharge voltage 
curves between 10-90% SOC range, and a 6th order polynomial fit to the average charge/discharge data. 
We use this polynomial as a representative Voc curve in the equivalent circuit model.  

 

FIGURE 24 BATTERY-IN-THE-LOOP TEST BED COMPRISING A PAIR OF SORENSON POWER SUPPLY AND 
PROGRAMMABLE ELECTRONIC LOAD, AND A DS1103 DSPACE CONTROL BOARD. 

To obtain a set of representative parameter values for the battery model, we apply a pulse current 
profile as shown in Figure 26(a) to the battery cell resting at 3.2 V. The resultant voltage response, as well 
as the response of a hand-tuned model are shown in Figure 26(b). As seen from the figure, the battery 
model and the actual battery cell respond very similarly to the applied current signal. We use the hand-
tuned battery model as a representative model to evaluate the estimator. 

    

FIGURE 25 LOW-CURRENT BATTERY VOLTAGE AS A FUNCTION OF SOC: (A) FULL SOC RANGE, AND (B) 10-
90% SOC RANGE WITH A 6TH ORDER POLYNOMIAL APPROXIMATION REPRESENTING THE OPEN-CIRCUIT 

VOLTAGE.      
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FIGURE 26 BATTERY MODEL EVALUATION: (A) APPLIED CURRENT, (B) THE ACTUAL BATTERY CELL, AND 
THE HAND-TUNED MODEL VOLTAGE RESPONSES. 

 
4.2. Generating Current Profiles  

In this section, we use a previously-developed PHEV power management system model [16] to generate 
a battery current profile under realistic driving conditions. In the previous study, the authors have used 
stochastic dynamic programming to develop an optimal control policy for a power split PHEV model 
similar in configuration and dynamics to Toyota Prius. The power management system has been 
optimized for a stochastic representation of real-world driving conditions, resulting in a control policy 
that blends energy from fuel and the battery. The details of the system dynamics and control 
development can be found in [16]. In this study, we only provide a simulation of the PHEV model with 16 
kWh battery.  

Figure 27 shows the FTP-72 (Federal Test Procedure) drive cycle, and the resultant battery current 
trajectory obtained from simulating the PHEV model. The current trajectory is dominantly negative, 
which results in the depletion of the battery. However, due to regenerative breaking, we can also see 
positive spikes in the current, leading to temporary battery charging.  

   

FIGURE 27 PHEV MODEL SIMULATION: (A) FTP-72 CYCLE, AND (B) CELL-LEVEL BATTERY CURRENT. 

To enable longer simulation times for the battery estimator, we use the obtained current profile and 
generate a full charge/discharge cycle by applying the same current trajectory back-to-back until the 
battery SOC reaches its lower limit. Then we apply a constant positive current to charge the battery until 
it reaches the upper SOC limit. This cycle can be repeated for as many times as the battery estimator 
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simulation time requires. Figure 28 shows the obtained current trajectory for nearly three consecutive 
charge/discharge cycles between 20-80% SOC limits.      

     

FIGURE 28 BATTERY CYCLING BETWEEN 20-80% SOC USING REPEATED DRIVE CYCLE-BASED 
DISCHARGING AND CONSTANT-CURRENT CHARGING AT 2 AMPERES: (A) CURRENT PROFILE AND (B) SOC 

TRAJECTORY FOR 10 HOURS. 

 
4.3. Battery Estimator Simulation 

In this section, we use the representative battery model and the current profile obtained in the previous 
sections to evaluate the developed battery state/parameter estimation method. Figure 29 shows the 
block diagram of the estimation strategy. The current is simultaneously applied to both the 
representative battery model and the estimator. The estimator parameters are initialized to be 10-20% 
different from those of the representative model. The voltage obtained from the representative model is 
also fed to the estimator as the measured voltage. To create a more realistic simulation, we also add two 
random Gaussian noise signals to the current and voltage measurements. The noise standard deviations 
are set to 10 mA for the current signal and 2 mV for the voltage signal. These values are set at roughly 
twice the actual noise standard deviations measured from the BIL test bed, to account for additional 
noise contributions in real-world environments, such as moving vehicles.    

 

FIGURE 29 BATTERY ESTIMATOR SIMULATION DIAGRAM 

The parameter values used in the representative battery model and the initial guesses for the estimator 
are summarized in Table 7. We use the same Voc function for both the model and the estimator. To 
simulate the model and the estimator, we discretize them using zero-order hold method and set the time 
step to 1 s and the forgetting factor value to 0.99999. Based on this λ value, the weight of a 
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measurement from 20 hours ago is half of that of the current measurement in the estimator cost 
function.   

TABLE 7 LIST OF PARAMETER VALUES FOR THE MODEL AND THE ESTIMATOR. 

Parameter 
[unit] 

Value used in 
the model 

Initial guess for 
the estimator 

Q [A.hr] 2 2.2 

R [mΩ] 8 10 

Cr [F] 2700 3000 

Rr [mΩ] 11 10 

SOC(0) 0.7 0.5 
 
In the simulations of this section, we use the Legendre polynomials as the polynomial chaos basis for the 
estimator. To demonstrate the impacts of the gPC expansion order, we simulate the estimator separately 
for 2 and 3 gPC expansions terms, i.e., N = 2 and N = 3. The first three terms of the Legendre polynomials 
are given by:  

𝝋𝟏(𝝃) = 𝟏,   𝝋𝟐(𝝃) = 𝝃,   𝝋𝟑(𝝃) = 𝟏
𝟐
�𝟑𝝃𝟐 − 𝟏�                                (88) 

The inner product of two Legendre polynomials is given by: 

 
� 𝝋𝒊(𝝃)𝝋𝒋(𝝃)𝒅𝝃 =

𝟐
𝟐𝒊 + 𝟏

𝜹𝒊𝒋
𝟏

−𝟏
 (89) 

The estimator gain values can affect the stability of the estimator. Large estimator gain values can result 
in instability, and small gain values can slow down the estimation convergence rate. We choose the gain 
values through a trial-and-error process (see Table 8).  Note that we have deliberately chosen the 
estimator gain 𝛤𝛤x10 to be large, since it directly impacts the convergence rate of SOC estimate, to which 
the convergence of other parameters is tightly related.  Moreover, most battery management systems 
require a fast and accurate estimation of SOC for the safe and efficient operation of the battery.   

TABLE 8 ESTIMATOR GAIN VALUES. 

Estimator gain Value 

𝛤𝛤α 2×10-14 

𝛤𝛤R 10-8 

𝛤𝛤β  10-10 

𝛤𝛤ξ 10-5 

𝛤𝛤x10 100 
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The battery parameter estimation results for parameters Q, R, Cr and Rr are shown in Figure 30 for a 10-
day time window. The estimator is turned off for the first day, to show the transient part of the 
estimation more clearly.  As seen from the results, the estimator with 2 gPC expansions terms estimates 
parameters Q and R quite well, but fails to accurately estimate the battery relaxation parameters, Cr and 
Rr. The estimator with 3 gPC expansion terms, however, converges to a close neighborhood of the actual 
model parameters for all four parameters. Including further expansion terms in the gPC approximation 
may result in marginal improvements in the estimator’s accuracy, but at the cost of significant increase 
in the numerical and computational complexity.  

 

  

FIGURE 30 BATTERY PARAMETER ESTIMATION USING 2ND- AND 3RD-ORDER GPC-BASED RECURSIVE 
ESTIMATOR. 

The SOC estimation and output voltage absolute error trajectories for the 3rd-order estimator are shown 
in Figure 31. We can see that the SOC estimation error has a sudden drop initially, and then converges to 
zero at nearly the same rate as the other parameters. The voltage error plot shows that the estimator 
has been able to suppress the output error to nearly the noise level over time.        
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FIGURE 31 BATTERY SOC ESTIMATION AND OUTPUT VOLTAGE ERROR TRAJECTORIES. 

 

4.4. Long-term Battery Health Estimation 

In this section, we evaluate the estimator’s capability in estimating battery state-of-health in the long 
term. To carry out this simulation, we use a previously developed battery degradation model [17], where 
the rate at which the charge capacity of the battery degrades is related to the battery current and 
voltage through a nonlinear map. This map is obtained by cycling the A123 System’s LiFePO4 battery cells 
at various charge/discharge cycles for several months and measuring the charge capacity of the cells at 
certain time intervals. The obtained experimental data have then been used to construct a surface 
response function, as shown in Figure 32. The details of the model can be found in [17]. Here, we use this 
model to evaluate the long-term performance of the proposed estimator, noting that this model applies 
to the battery charge capacity only, and the other parameters are kept constant in the simulation.  

 

 

FIGURE 32 A123 SYSTEMS LIFEPO4 BATTERY DEGRADATION MAP [17]. 

 

Figure 33 shows the long-term battery state-of-health estimation results for a 100-day time window. The 
same initial values as those of the first simulation are used here for the estimator. The parameter update 
laws are turned off for the first 10 days to show the convergence of the parameters more clearly when 
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the estimator is turned on. As we can see from the charge capacity and resistance estimation plots, the 
estimator is capable of both converging to the actual parameter values and also tracking them despite 
their possible variations over time. This simulation further endorses the effectiveness of the proposed 
battery estimation scheme for utilization in real-world applications, such as electric vehicles. 

     

FIGURE 33 LONG-TERM BATTERY STATE-OF-HEALTH ESTIMATION SIMULATION.   
 

Future work will focus on applying the proposed estimation method to real battery cells under various 
charging and discharging conditions. Investigating the effects of temperature variation on the estimation 
accuracy, and including it in the estimator for possible improvements, will also be considered. 
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
In this research, we developed a battery parameter and state estimation framework using the 
generalized polynomial chaos (gPC) theory and the gradient-based recursive estimation technique. We 
used an equivalent-circuit battery model with a first-order relaxation term as a representative battery 
model for estimator design. We then used a change of variables and the gPC theory to move all of the 
system parameters to the output equation. We formulated a parameter estimation problem based on 
the integral of the output error squares, and used the gradient descent-based recursive estimation 
method to obtain a set of parameter update laws for the estimator. Simulation results show that the 
proposed estimator, with at least three gPC expansion terms, can converge to the actual system 
parameters. Moreover, it is able to track the battery capacity fade as the battery undergoes gradual 
degradation over time due to cycling. 
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PART 4:  STOCHASTIC TRAFFIC FLOW MODELING 
 
PROBLEM 
 
Introduction and Overview 

Macroscopic traffic flow models can be used to study the relationships between macroscopic traffic flow 
parameters such as flow, density, and speed by assuming that the flow of traffic can be compared to the 
flow of continuum fluids. The most famous continuum traffic flow model, known as the LWR model, was 
developed concurrently by Lighthill and Whitham (1955) and Richards (1956). The LWR model is a first-
order model and assumes that the number of vehicles between any two points is conserved if there are 
no sources or sinks. If 𝒒(𝒙, 𝒕) denotes the flow at any point 𝒙 and time 𝒕 and 𝒌(𝒙, 𝒕) denotes the density 
at any point 𝒙 and time 𝒕, the conservation of flow can be represented by the following equation: 

𝝏𝒌
𝝏𝒕

+ 𝝏𝒒
𝝏𝒙

= 𝟎                                                                                  (90) 

In addition to the conservation equation, an equilibrium relationship is assumed, 𝒒(𝒙, 𝒕) = 𝑸(𝒌(𝒙, 𝒕)) 
between the flow rate and the density and boundary conditions will need to be satisfied. Some of the 
popular equilibrium relationships are based on the Greenshield, Greenberg, and Underwood models 
(May, 1990). According to the equilibrium relationships, the flow at any point on the road is a function of 
the concentration or density at that point. Changes in flow are instantaneously propagated in the traffic 
stream as kinematic waves.  

If 𝑪 is a curve connecting two points (𝒕𝟏,𝒙𝟏) and (𝒕𝟐,𝒙𝟐) and if 𝑵(𝒕𝟏,𝒙𝟏) and 𝑵(𝒕𝟐,𝒙𝟐) denote the 
cumulative number of vehicles observed at the two points, then the conservation equation can also be 
written in the integral form as: 

𝑵(𝒕𝟐,𝒙𝟐) −𝑵(𝒕𝟏,𝒙𝟏) = ∫ 𝒒𝒅𝒕 − 𝒌𝒅𝒙𝑪                                         (91) 

One way to easily solve the LWR model for homogenous freeway segments is to determine curves along 
which the density 𝒌(𝒙, 𝒕) is constant. These curves are called characteristic curves. The conservation law 
can be rewritten as 

𝝏𝒌
𝝏𝒕

+ 𝒅𝒒
𝒅𝒌

𝝏𝒌
𝝏𝒙

= 𝟎                                    (92) 

For the above model, the characteristic curves are straight lines. Consider an observer traveling in a 
straight line such that  

𝒅𝒙
𝒅𝒕

= 𝒅𝒒
𝒅𝒌

                                                                                    (93) 

The above expression implies that the observer travels at a speed equal to the speed of the wave.  

𝒅𝒌
𝒅𝒕

= 𝝏𝒌
𝝏𝒕

+ 𝝏𝒌
𝝏𝒙

𝝏𝒙
𝝏𝒕

= 𝝏𝒌
𝝏𝒕

+ 𝒅𝒒
𝒅𝒌

𝝏𝒌
𝝏𝒙

= 𝟎                                                          (94) 
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Thus along the characteristic line, the observer will not observe a change in density. So if the initial 
density is known (from the boundary conditions), then the concentration on any point on the line can be 
determined. The LWR model has been applied to evaluate several applications in relation to traffic 
dynamics. The LWR model is accurate in modeling several observed traffic flow phenomena, such as 
shockwaves. However, the LWR models have several deficiencies also. The LWR model is unable to model 
differences in driver behavior, especially in uncongested, light-traffic conditions. As the system evolution 
is described by one parameter density 𝒌(𝒙, 𝒕), it cannot differentiate between fast-moving and slow-
moving traffic. The model assumes instantaneous deceleration or acceleration when a vehicle reaches a 
shockwave. The shockwaves do not have any width or time. The LWR model does not account for driver 
anticipation and reaction time. Drivers have the ability to look ahead and adjust their driving behavior 
even before the shockwaves reach their vehicle. The LWR model is unable to model this phenomenon. 
The flow density relationship may have oscillations and there might not exist a perfect equilibrium flow 
density relationship.  

In order to address the issue of driver reaction and anticipation, higher-order models were developed. 
Lighthill and Whitham (1955) proposed the following second-order model: 

𝝏𝒒
𝝏𝒕

+ 𝑪 𝝏𝒒
𝝏𝒙

+ 𝑻𝝏𝟐𝒒
𝝏𝒕𝟐

− 𝑫𝝏𝟐𝒒
𝝏𝒙𝟐

= 𝟎                                                          (95) 

In the above equation, 𝑪 is the speed of disturbance shock waves, 𝑻 is the reaction time, and 𝑫 the 
diffusion coefficient, which represents how vehicles can react to changes in traffic conditions that are not 
local. 

Payne (1971) developed a second-order traffic flow model from car-following theory, which combines the 
following momentum equation with the conservation equation: 

𝝏𝒗
𝝏𝒕

+ 𝒗𝝏𝒗
𝝏𝒙

= −𝒗−𝒗∗(𝒌)
𝑻

− 𝒗∗(𝒌)
𝟐𝑻𝒌

𝝏𝒌
𝝏𝒙

                                                           (96) 

In the above equation, 𝒗∗(𝒌) denotes the equilibrium speed flow relationship. The assumption in the 
Payne model is that the speed at a location is affected with a lag 𝑻. The second term on the left-hand 
side captures the change of speed due to the convection effect, the first term on the right-hand side 
captures the driver adaptation or adjustment to equilibrium speed, and the second term on the right-
hand side captures the driver anticipation, which depends on the concentration gradient. One of the 
main issues with the above model is the presence of density in the denominator. This makes it difficult to 
solve using the finite difference method, especially for small densities. Papageorgiou (1983) accounted 
for this computational instability at small densities by adding a 𝜥 to the density in the denominator of 
the anticipation term. Ross (1988) developed a simple variant of the model based on the assumption that 
drivers always desire to travel at the free-flow speed: 

𝝏𝒗
𝝏𝒕

+ 𝒗𝝏𝒗
𝝏𝒙

= 𝒗𝒇−𝒗
𝑻

                                                                         (97) 

where 𝒗𝒇 is the free-flow speed. Kuhn (1985) further modified Payne’s (1971) momentum equation by 
the addition of a new anticipation term.  
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𝝏𝒗
𝝏𝒕

+ 𝒗𝝏𝒗
𝝏𝒙

= 𝒗∗(𝒌)−𝒗
𝑻

− 𝑪𝟎𝟐   𝝏𝒌
𝝏𝒙

+ 𝝂 𝝏𝟐𝒖
𝝏𝒙𝟐

                                                      (98) 

In the above equation, 𝝂  corresponds to the viscosity coefficient and the 𝑪𝟎 term relates to the elasticity 
of car following behavior. Michaelopoulos (1993) developed a new higher-order formulation to account 
for the impact of geometric aspects of roadway systems on traffic flow and traffic friction caused by 
interaction between ramp flows and mainline traffic.  

𝒅𝒖
𝒅𝒕

= 𝚽
𝑻
�𝒖𝒇(𝒙) − 𝒖� − 𝝁𝒌𝝐𝒈 − 𝝂𝒌𝜷 𝝏𝒌

𝝏𝒙
                                                      (99) 

In the above equation, 𝜱 is a flag which indicates if there is a change in free-flow speed in the current 
location when compared to upstream location and the relaxation time 𝑻 is assumed to vary with 
congestion. The second term in the right-hand side corresponds to the friction term, while the third term 
is the anticipation term.  

Daganzo (1995) critically reviewed all second-order traffic flow models and showed how the above 
models resulted in negative flow and speed. Zhang (1998) developed a new non-equilibrium based 
theory of traffic flow that addresses the above issue of wrong direction travel. Zhang’s model is based on 
the assumption that drivers adjust their speeds based on traffic conditions ahead of them with a time 
delay and the existence of a unique speed density relationship.  

𝝏𝒗
𝝏𝒕

+ 𝒗𝝏𝒗
𝝏𝒙

= 𝒗∗(𝒌)−𝒗
𝑻

− 𝒌 𝒗∗′(𝒌) 𝝏𝒌
𝝏𝒙

                                                        (100) 

 

Aw and Rascle (1999) developed a new momentum equation which also addresses the deficiency 
identified by Daganzo (1995) based on a pressure law. 

𝝏[𝒗+𝒑(𝒌)]
𝝏𝒕

+ 𝒗 𝝏[𝒗+𝒑(𝒌)]
𝝏𝒙

= 𝟎                                                              (101) 

In the above equation, 𝑝(𝑘) = 𝑝𝛾 with 𝛾 > 0. To summarize, despite a significant amount of work being 
done in using variants of the LWR and second-order models in capturing traffic flow, there exist 
numerous deficiencies. One of the critical deficiencies is the inability to model the various uncertainties in 
driving behavior and equilibrium speed flow relationships. 
 
 
 
 
APPROACH 
 
Uncertainty in Traffic Flow Models 

Models used for evaluating, planning, designing, and operating transportation systems are plagued with 
uncertainty from numerous sources. The uncertainty in transportation systems modeling can be 
categorized into two types – input parameter uncertainty and functional uncertainty. Uncertainty in 
input parameters can be from two sources. The first is from our inability to conduct extensive data 
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collection to completely characterize the input parameter. The second source of uncertainty is because 
certain traffic and transportation parameters are naturally uncertain, as they are affected by a number 
of factors – human decision making, weather, etc. – all of which cannot be characterized precisely. 
Functional uncertainty arises from the inability of the models to capture all factors associated with the 
transportation system. For example, the previous section has clearly highlighted the issues associated 
with LWR model and higher models and their inability to capture certain critical phenomena associated 
with traffic flow systems.  

Uncertainty in transportation systems has been well researched in the transportation planning and 
network analysis domain. The three types of uncertainties discussed above have been defined as 
specification errors, calibration errors, and forecasted input parameter errors in the planning context 
(Lowe and Richards, 1983). Mahmassani (1984) identified five types of uncertainty in the transportation 
decision-making context – extreme random shocks and unexpected events due to technology shifts, 
changes in travel patterns due to socio-political causes, errors in forecasted demands and link flows, 
fuzziness in performance metrics characterizing transportation systems, and variation in people’s choices 
in decision making. Several models have been developed to characterize the uncertainty and negate its 
impact in the transportation network analysis and planning community. Asakura and Kashiwadani 
(1991), Clark and Watling (2005), and Shao et al. (2005) studied the impact of short-term demand 
uncertainty on traffic network models. Waller et al. (2001), Ukkusuri and Waller (2006), and Duthie et al. 
(2011) developed methods to account for the impacts of long-term demand uncertainty on 
transportation network performance. Du and Nischolson (1997), Chen et al. (2002), Lo and Tung (2003), 
Boyles and Waller (2010), and Unnikrishnan and Waller (2011) developed models to account for the 
impact of day-to-day capacity uncertainty and degradation on traffic network models. A majority of the 
above studies focused on accounting for uncertainty and resilient transportation decision making in a 
planning context. Almost all the models used have been for a static analysis, where a cost function 
captures the impact of flow on travel costs and system performance. To date, work on characterizing the 
impact of uncertainty on performance of dynamic flow models has been limited.  

Jo and Lou (2001) developed a nonlinear stochastic model that can use Greenshield’s, Greenberg’s, or 
Underwood’s speed density relationship. The nonlinear models are based on the LWR model. Nonlinear 
terms are decomposed using Adomian’s polynomial approach. Then the deterministic model is 
transferred to a stochastic case using Ito’s equation. Wang et al. (2005, 2007) used a stochastic traffic 
flow model embedded in an extended Kalman filtering framework to estimate the traffic states on a 
freeway segment. The stochasticity is modeled by adding an error noise term in the speed and flow 
equation in the space-time discretized form. The purpose of adding the noise term was to account for 
modeling inaccuracies. Khoshyaran and Lebacque (2009) developed a stochastic variant of a generic 
second-order model, which is the LWR model combined with a driver-dependent fundamental diagram. 
In the stochastic variant the driver attribute is assumed to be random whose dynamics are described by a 
Brownian process.  

Boel and Mihaylova (2006) extended the Cell Transmission Model by modeling the sending and receiving 
functions as random variables. The uncertainty arises because the authors assume that the location and 
speed of the vehicles in a cell at a given time are random. Sumalee et al. (2011) developed a stochastic 
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variant of the modified cell transmission model proposed by Munoz et al. (2003). In the new stochastic 
cell transmission model, all parameters associated with the sending and receiving functions and the 
freeway travel demand are assumed to be random variables. Jabari and Liu (2011) model the uncertainty 
due to driver gap choice in a new stochastic traffic flow model. The stochastic traffic flow model 
developed is similar to that of the CTM in the sense that it operates on discrete space. However, the time 
is considered to be continuous. The uncertainty in driver gap choice is modeled by assuming the time 
headways to be random.  

Several authors have noted the uncertainty arising in the speed-flow relationship (Wang et al., 2011). 
Kerner (1998, 1999a, 1999b), based on empirical data, postulated that the fundamental speed-flow 
relationship does not hold under congested conditions. Ngoduy (2009) argued that the scattering in flow-
density relationship is caused by variations in driving behavior and developed a multi-class, first order 
model with random capacities. Li et al. (2011) developed a variant of the first-order LWR model where 
the free-flow speed in Greenshield’s model is assumed to be random and varying with density.  

This work focuses on the impact of the uncertainty in the equilibrium speed-flow relationship on traffic 
flow parameters in the first-order LWR model. The two equilibrium relationships considered are 
Greenshield’s and Underwood’s speed density models. Free-flow speed is assumed to be uncertain and to 
follow a random probability distribution. The uncertainty is captured using Monte Carlo simulation and 
finite difference methods are used to solve the resulting stochastic differential equation. In this report, 
different ways of Monte Carlo sampling are also studied to understand its impact on the resulting traffic 
flow parameters.  

METHODOLOGY 
 
Uncertainty in LWR Model - Computational Study 

In this research, the first-order LWR equation is applied to model the flow of traffic on a freeway 
segment with constant demand. We consider a freeway segment which is 5 miles long. The freeway 
segment has a constant demand of 2,400 vehicles per hour. We use two equilibrium speed density 
relationships – Greenshield’s model and Underwood’s model. Using Greenshield’s model, two uncertain 
parameters are considered: free-flow speed and jam density. With Underwood’s model, two uncertain 
parameters are considered: free-flow speed and critical density. Due to short-term operational 
uncertainty, the free-flow speed and jam/critical density are assumed to vary from day-to-day depending 
on factors like weather. The mean free-flow speed is assumed to be 75 mph and the mean jam density is 
assumed to be 250 vehicles per mile. The mean critical density is assumed to be 50 vehicles per mile. The 
disturbance in the free-flow speed and jam/critical density is assumed to follow a normal distribution, 
with zero mean and known variance. Monte Carlo simulation is used to simulate the realization of free-
flow speed and jam density. Each realization of the Monte Carlo simulation is assumed to correspond to 
one specific day during peak hour in the free-flow segment. The velocity profile is obtained using a 
forward difference method for 300 seconds, using a time interval of 1 second and a cell length of 0.1 
mile. This discretization will satisfy the Courant-Friedrichs-Lewy condition for all potential values of the 
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free-flow speed. The freeway is assumed to be empty initially. The evolution of velocity is studied at four 
locations – at 0.5 miles, 1 mile, 2.5 miles, and 5 miles.  

 
FINDINGS 
 
Greenshield’s Model – Mean Value  

Figures 34 through 37 display the variation in velocity with time at the four locations. The deterministic 
LWR model is solved assuming the mean free-flow speed and the mean jam density. As expected, since 
the initial densities are assumed to be zero (there are no vehicles on the freeway at time zero), the 
decrease is more gradual as we travel further down the freeway. 

 

FIGURE 34 LOCATION 1 VARIATION OF VELOCITY PROFILE OVER TIME 
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FIGURE 35 LOCATION 2 VARIATION OF VELOCITY PROFILE OVER TIME 

 

 

FIGURE 36 LOCATION 3 VARIATION OF VELOCITY PROFILE OVER TIME 
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FIGURE 37 LOCATION 4 VARIATION OF VELOCITY PROFILE OVER TIME 

 

Greenshield’s Model – Variation of Velocity profile with uncertainty 

Figures 38 through 41 illustrate the variation of velocity profiles with uncertainty in free-flow speed and 
jam density. The disturbance in free-flow speed and jam density is assumed to have a normal 
distribution, with zero mean and standard deviation of 3. Five free-flow speed and jam density scenarios 
are simulated. The velocity profiles of the difference scenarios are found to have the same shape with 
different magnitudes. At locations 1, 2, and 3, the reduction in speed occurs at the same time for all 
scenarios. At location 4 the speed reduction appears to happen at different time intervals for different 
scenarios.  

65

66

67

68

69

70

71

72

73

74

75

76

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

Speed 

Time (in Seconds) 

Location 4 

L4

53 
 



 

FIGURE 38 LOCATION 1 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 
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FIGURE 39 LOCATION 2 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 

 

 

FIGURE 40 LOCATION 3 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 
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FIGURE 41 LOCATION 4 - VELOCITY PROFILE FOR 5 MONTE CARLO SIMULATIONS 

 

Greenshield’s Model – Variation of Error with Monte Carlo Sample Size 

Tables 9 and 10 show the variation of errors and means at the four locations with increase in sample size 
at the first time interval and the last time interval. The standard deviation of the disturbance in free-flow 
speed and jam density is set equal to 3. As expected, the errors decrease with increase in Monte Carlo 
sample size. The least errors are found at 100 realizations. The errors are found to be less than 0.5 for 
100 realizations for all cases. The errors are marginally higher for the last time interval when compared 
to the first time interval.  

 

 

 

 

 

 

 

50

55

60

65

70

75

80

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

Sp
ee

d 

Time 

Location 4 

Scen 1

Scen 2

Scen 3

Scen 4

Scen 5

56 
 



TABLE 9 VARIATION OF ERROR/MEAN WITH SAMPLE SIZE (T =1 SECOND) 

  L1 L2 L3 L4 
Scen Error 
5 1.67759 1.67759 1.67759 1.67759 
10 1.0298 1.0298 1.0298 1.0298 
25 0.71124 0.71124 0.71124 0.71124 
50 0.44395 0.44395 0.44395 0.44395 
75 0.34823 0.34823 0.34823 0.34823 
100 0.2885 0.2885 0.2885 0.2885 
  Mean 
5 70.995 70.995 70.995 70.995 
10 71.896 71.896 71.896 71.896 
25 74.36 74.36 74.36 74.36 
50 74.718 74.718 74.718 74.718 
75 74.924 74.924 74.924 74.924 
100 74.862 74.862 74.862 74.862 

 

 

TABLE 10 VARIATION OF ERROR/MEAN WITH SAMPLE SIZE (T =300 SECOND) 

  L1 L2 L3 L4 
Scen Error 
5 1.76354 1.76354 1.7084 1.16177 
10 1.07973 1.07973 1.05193 0.70968 
25 0.73608 0.73608 0.72638 0.49234 
50 0.46204 0.46204 0.45758 0.30902 
75 0.36303 0.36303 0.36002 0.24215 
100 0.30096 0.30096 0.29864 0.20022 
  Mean 
5 59.723 59.723 59.806 66.146 
10 60.528 60.528 60.591 66.749 
25 63.046 63.046 63.077 68.442 
50 63.433 63.433 63.455 68.693 
75 63.633 63.633 63.652 68.832 
100 63.552 63.552 63.571 68.784 
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Underwood’s Model – Mean Value  

Figures 42 through 45 display the variation in velocity with time at the four locations. The deterministic 
LWR model is solved assuming the mean free-flow speed and the mean jam density. The variation in 
velocity profile under the Underwood model appears to be marginally different from that of 
Greenshield’s model. The Underwood model is defined by two parameters – the free-flow speed and the 
density at which flow is maximum. The mean critical density at which the flow is maximum is assumed to 
be 50 vehicles per mile. At location 4 the speed profile is found to be similar to that of Greenshield’s 
model.  

 

FIGURE 42 LOCATION 1 VARIATION OF VELOCITY PROFILE OVER TIME 
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FIGURE 43 LOCATION 2 VARIATION OF VELOCITY PROFILE OVER TIME 

 

 

FIGURE 44 LOCATION 3 VARIATION OF VELOCITY PROFILE OVER TIME 
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FIGURE 45 LOCATION 4 VARIATION OF VELOCITY PROFILE OVER TIME 

 

Underwood’s Model – Variation of Velocity Profile with Uncertainty 

Figures 46 through 49 illustrate the variation of velocity profiles with uncertainty in free-flow speed and 
jam density. The disturbance in free-flow speed and critical density is assumed to have a normal 
distribution, with zero mean and standard deviation of 3. Five free-flow speed and jam density scenarios 
are simulated. The speed profiles at all four locations appear to be similar to each other. The speed 
profile at location 4 and location 1 with Underwood’s model appears to be similar to that of the 
Greenshield model. As expected, the point at which the speed reduces increases with increase in distance 
from the beginning of the freeway. 
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FIGURE 46 LOCATION 1 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 

 

FIGURE 47 LOCATION 2 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 
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FIGURE 48 LOCATION 3 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 

 

FIGURE 49 LOCATION 4 - VELOCITY PROFILE FOR 5 MONTE CARLO REALIZATIONS 
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Underwood’s Model – Variation of Error with Monte Carlo Sample Size 

Tables 11 and 12 show the variation of errors and means at the four locations, with increases in sample 
size at the first time interval and the last time interval. The standard deviation of the disturbance in free-
flow speed and jam density is set equal to 3. As expected the errors decrease with increase in Monte 
Carlo sample size. The least errors are found at 100 realizations. The errors are found to be less than 0.5 
for even 50 realizations for all cases. When compared with Greenshield’s model, the errors are found to 
be relatively stable for t=1 second and t = 300 seconds. At location 4, the errors are found to be higher at 
t=1 second when compared to t=300 seconds.  

TABLE 11 VARIATION OF ERROR/MEAN WITH SAMPLE SIZE (T =1 SECOND) 

  L1 L2 L3 L4 
Scen Error 
5 1.6776 1.6776 1.6776 1.6776 
10 1.0298 1.0298 1.0298 1.0298 
25 0.71124 0.71124 0.71124 0.71124 
50 0.44395 0.44395 0.44395 0.44395 
75 0.34823 0.34823 0.34823 0.34823 
100 0.2885 0.2885 0.2885 0.2885 
  Mean 
5 70.995 70.995 70.995 70.995 
10 71.896 71.896 71.896 71.896 
25 74.36 74.36 74.36 74.36 
50 74.718 74.718 74.718 74.718 
75 74.924 74.924 74.924 74.924 
100 74.862 74.862 74.862 74.862 
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TABLE 12 VARIATION OF ERROR/MEAN WITH SAMPLE SIZE (T =300 SECOND) 

  L1 L2 L3 L4 
Scen Error 
5 1.6776 1.6776 1.6826 0.98648 
10 1.0298 1.0298 1.0321 0.60376 
25 0.71124 0.71124 0.71209 0.40362 
50 0.44395 0.44395 0.44429 0.249 
75 0.34823 0.34823 0.34844 0.19453 
100 0.2885 0.2885 0.28865 0.16174 
  Mean 
5 70.995 70.995 70.985 64.567 
10 71.896 71.896 71.89 65.14 
25 74.36 74.36 74.357 66.539 
50 74.718 74.718 74.716 66.747 
75 74.924 74.924 74.922 66.868 
100 74.862 74.862 74.86 66.846 

 

The preceding numerical analysis demonstrates that with increase in sample sizes, the errors in velocity 
profiles will decrease. However, for large freeway segments with more complicated second-order models 
it might not be possible to arrive at relatively low errors in a reasonable computational time due to the 
time it takes to run each scenario. Therefore, there is a need to develop more efficient sampling 
strategies that arrive at low errors at lower samples. In this research effort, we study the efficacy of 
using antithetic variance reduction technique on the errors of the velocity profiles.  

Antithetic variance reduction technique 

The antithetic variance reduction technique was implemented for the same number of scenarios and the 
performance compared with the simple Monte Carlo simulation. The antithetic technique was found to 
outperform other, more complex Monte Carlo simulation techniques for transportation planning 
applications (Duthie et al., 2011). In the numerical study, performance of antithetic sampling over Monte 
Carlo sampling was studied by comparing the errors at the four locations at time = 150 seconds and time 
= 300 seconds for both the Greenshield and Underwood equilibrium speed-flow relationships (see Tables 
15-15). A higher standard deviation of 6 and 10 were assumed for the uncertain parameters. The mean 
was assumed to be the same as the previous study.  
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TABLE 13 ERRORS AT T = 150 SECONDS, STD DEV = 6, GREENSHIELD’S 

  L1 L2 L3 L4 
Scen Antithetic 
5 0.06187 0.21699 0.03935 0.01701 
10 0.0361 0.12835 0.0245 0.01007 
25 0.0172 0.05151 0.01457 0.00395 
50 0.01053 0.0295 0.00869 0.00219 
75 0.00787 0.01982 0.00695 0.00146 
100 0.0077 0.01674 0.00688 0.00118 
  Monte Carlo 
5 3.542 3.2282 2.6389 3.3551 
10 2.169 2.0092 1.5969 2.0595 
25 1.4745 1.4197 1.089 1.4215 
50 0.92421 0.89941 0.68102 0.88709 
75 0.72618 0.70951 0.53202 0.69587 
100 0.60207 0.58925 0.43902 0.57657 

 

TABLE 14 ERRORS AT T = 300 SECONDS, STD DEV = 6, GREENSHIELD’S 

  L1 L2 L3 L4 
Scen Antithetic 
5 0.08903 0.08803 0.31473 0.15577 
10 0.05231 0.05171 0.18709 0.09209 
25 0.02275 0.02256 0.07412 0.04217 
50 0.0135 0.01341 0.0422 0.02566 
75 0.00971 0.00966 0.02822 0.01856 
100 0.00912 0.00908 0.02381 0.01697 
  Monte Carlo 
5 3.5718 3.5709 3.1285 2.4896 
10 2.1823 2.1819 1.9658 1.497 
25 1.4786 1.4785 1.4095 1.027 
50 0.92591 0.92586 0.89643 0.64417 
75 0.72719 0.72716 0.70848 0.50218 
100 0.60277 0.60276 0.58909 0.41316 
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TABLE 15 ERRORS AT T = 150 SECONDS, STD DEV = 10, GREENSHIELD'S 

  L1 L2 L3 L4 
Scen Antithetic 
5 0.13412 0.84575 0.04148 0.13501 
10 0.08435 0.50013 0.02836 0.08044 
25 0.04236 0.20383 0.03128 0.03118 
50 0.02293 0.11947 0.01847 0.01722 
75 0.01798 0.08078 0.01587 0.01143 
100 0.0171 0.0693 0.01576 0.00917 
  Monte Carlo 
5 5.6284 4.8425 4.7677 5.5919 
10 3.5053 3.0739 2.845 3.4326 
25 2.4243 2.2798 1.9026 2.3639 
50 1.5257 1.4614 1.1854 1.4744 
75 1.2022 1.1585 0.92113 1.157 
100 0.99832 0.96453 0.75653 0.959 

 

 

TABLE 16 ERRORS AT T = 300 SECONDS, STD DEV = 10, GREENSHIELD'S 

  L1 L2 L3 L4 
Scen Antithetic 
5 0.37005 0.08092 1.1126 0.21216 
10 0.21864 0.04633 0.65825 0.12601 
25 0.09056 0.04175 0.27126 0.07522 
50 0.05254 0.02938 0.16121 0.04703 
75 0.03676 0.02281 0.10948 0.03674 
100 0.03366 0.0235 0.0944 0.03416 
  Monte Carlo 
5 6.1807 5.8631 4.5659 4.6793 
10 3.7481 3.6169 2.928 2.7605 
25 2.4981 2.4587 2.2392 1.8446 
50 1.5559 1.5398 1.4461 1.1516 
75 1.2199 1.2107 1.1493 0.89164 
100 1.0103 1.0041 0.95843 0.72834 

 

The errors reveal that antithetic sampling significantly outperforms simple Monte Carlo sampling for 
almost all scenarios. In fact, the antithetic sampling produces fewer errors (10% of that of simple Monte 
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Carlo sampling at 100) at five scenarios when compared to Monte Carlo sampling at 100. Therefore, it is 
computationally more efficient to use antithetic sampling when compared to simple Monte Carlo 
sampling, especially if the length of the freeway and the time frame of analysis increase. Figure 50 
demonstrates visually the difference in errors between antithetic sampling at 5 and simple Monte Carlo 
sampling at 100 samples. Therefore, antithetic sampling delivers significant computational savings.  

 

 

FIGURE 50 REPRESENTATIVE COMPARISON OF ERRORS OF ANTITHETIC SAMPLING AT 5 SCENARIOS VS 
MONTE CARLO SAMPLING AT 100 

 

 

When Underwood’s model was used for the equilibrium speed-flow relationship, similar results were 
obtained, thus demonstrating the efficacy of antithetic sampling over simple Monte Carlo sampling and 
the robustness of the variance reduction techniques. Note that in Tables 17 through 20, many entries are 
0, which denotes that the errors are negligible.  
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TABLE 17 ERRORS AT T = 150 SECONDS, STD DEV = 6, UNDERWOOD'S MODEL 

  L1 L2 L3 L4 
Scen Antithetic 
5 0.00233 0.10861 0.45739 0.03618 
10 0.00403 0.2166 0.27167 0.02143 
25 0.01262 0.58771 0.11313 0.0084 
50 0.007 0.32879 0.06636 0.0047 
75 0.00734 0.34081 0.04527 0.00313 
100 0.31112 0.37797 0.03917 0.00253 
  Monte Carlo 
5 3.355 3.4095 2.2756 3.3549 
10 2.0549 2.226 1.3636 2.0595 
25 1.4238 1.6157 0.86274 1.4202 
50 1.001 1.0047 0.52877 0.8861 
75 0.76464 0.76585 0.41048 0.69516 
100 0.62283 0.63644 0.34014 0.57604 

 

TABLE 18 ERRORS AT T = 300 SECONDS, STD DEV = 6, UNDERWOOD'S MODEL 

  L1 L2 L3 L4 
Scen Antithetic 
5 Negligible Negligible 0.11039 0.21008 
10 Negligible Negligible 0.06499 0.12472 
25 Negligible Negligible 0.02555 0.11656 
50 Negligible Negligible 0.01365 0.06926 
75 Negligible Negligible 0.00903 0.04828 
100 Negligible Negligible 0.20231 0.05393 
  Monte Carlo 
5 3.3551 3.3551 3.4759 2.209 
10 2.0596 2.0596 2.1106 1.3268 
25 1.4225 1.4225 1.4388 0.85254 
50 0.88789 0.88789 0.92388 0.52749 
75 0.69646 0.69646 0.71942 0.41008 
100 0.577 0.57699 0.59229 0.34513 
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TABLE 19 ERRORS AT T = 150 SECONDS, STD DEV = 10, UNDERWOOD'S MODEL 

  L1 L2 L3 L4 
Scen Error 
5 0.04163 0.89674 1.3832 0.25169 
10 0.03246 0.81229 0.84239 0.14966 
25 1.375 1.72 0.34606 0.05821 
50 0.73914 0.9868 0.20175 0.03239 
75 0.81129 0.86972 0.13714 0.02152 
100 0.84513 0.80948 0.12308 0.0173 
  Mean 
5 5.6217 4.5454 4.3391 5.5918 
10 3.3307 3.6643 2.5544 3.4325 
25 2.3887 2.7427 1.5251 2.3569 
50 1.5035 1.5943 0.93118 1.469 
75 1.1768 1.2777 0.71501 1.1532 
100 0.98715 1.0924 0.59656 0.9563 

 

TABLE 20 ERRORS AT T = 300 SECONDS, STD DEV = 10, UNDERWOOD'S MODEL 

  L1 L2 L3 L4 
Scen Error 
5 Negligible Negligible 0.58901 1.981 
10 Negligible Negligible 0.33842 1.086 
25 Negligible Negligible 0.58216 0.66116 
50 Negligible Negligible 0.3121 0.37102 
75 0.00026 0.00229 0.51523 0.2518 
100 0.40334 0.38823 0.59568 0.22678 
  Mean 
  5.5919 5.5921 6.2338 4.3689 
  3.4327 3.4328 3.623 2.5631 
25 2.3709 2.3709 2.4699 1.6123 
50 1.5726 1.5609 1.3969 0.9908 
75 1.2183 1.2115 1.1251 0.78331 
100 1.0002 0.99555 0.93991 0.65955 
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CONCLUSIONS AND RECOMMENDATIONS 
 

Traffic flows on freeways are affected by a number of behavioral and environmental parameters that are 
uncertain and difficult to quantify. However, existing traffic flow models are not adequate to account for 
and capture the impact of the uncertainties. For example, significant day-to-day variations in free-flow 
speed, jam density, and critical density can exist based on weather conditions. Several past empirical 
studies have also noted the uncertainties in the equilibrium speed-flow relationship. In this project, the 
impact of uncertainties of free-flow speed, jam density, and critical density was studied for the basic LWR 
model using Greenshield’s and Underwood’s equilibrium relationships. The numerical results 
demonstrate that the velocity profiles can be significantly different depending on the actual values of the 
parameters. Therefore, there is a need to develop methodologies that account for this uncertainty. 
Monte Carlo based simulations were used to solve the stochastic differential equations. The errors were 
found to reduce with increase in sample size. Antithetic variance reduction technique was implemented 
to obtain lower errors at lower samples. The results demonstrate that using intelligent variance 
reduction techniques like antithetic sampling will result in significant computational savings.  

In terms of directions of future research, the results show the importance of accounting for uncertainty in 
traffic flow models. Therefore, there is a need to develop more accurate methods for solving traffic flow 
theory models under uncertainty. One potential venue could be to study the advances made in modeling 
and solving stochastic differential equations and apply that to traffic flow theory models. There is also a 
need to collect data to calibrate the uncertainties in parameters used in the traffic flow models.  
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